问题描述
我试图逐个元素地将小矩阵(比如2x2)中的每个元素与大矩阵(比如4x4)中的每个位置相乘.
I'm trying to multiply every element in a small matrix (let's say 2x2) with every position in a big matrix (let's say 4x4), element by element.
所以我想要
1 2 3 4 1 0 3 0
1 0 1 2 3 4 0 0 0 0
0 0 'x' 1 2 3 4 = 1 0 3 0
1 2 3 4 0 0 0 0
小矩阵会根据需要多次应用,并且乘法逐个元素地进行.我已经尝试了很多循环,但是在MATLAB中感觉不对,必须有更漂亮的方法吗?
The small matrix is applied as many times as it fits, and the multiplication is element by element. I've tried a bunch of loops, but that doesn't feel right in MATLAB, there must be prettier ways of doing it?
推荐答案
一种可能性是使用repmat
尽可能多次重复小的矩阵:
One possibility is to use repmat
to repeat the small matrix as many times as necessary:
C = repmat(A,size(B,1)/size(A,1),size(B,2)/size(A,2)).*B
另一种避免使用repmat
的可能性:切开大矩阵,将块排列在第三维和第四维中,然后使用bsxfun
进行乘法:
Another possibility, which avoids repmat
: cut up the large matrix, arrange the pieces in the third and fourth dimensions, and use bsxfun
to do the multiplication:
[m n] = size(A);
[M N] = size(B);
T = permute(reshape(B,M,n,[]), [2 1 3]);
T = permute(reshape(T,n,m,[],size(T,3)),[2 1 3 4]);
C = cell2mat(squeeze(mat2cell(bsxfun(@times,T,A),m,n,ones(1,M/m),ones(1,N/n))));
(这两行T = ...
进行了剪切,这是由于.)
(The two lines T = ...
do the cutting, and are due to A. Donda.)
这种方法的优势在于,如果内存问题很大,您可以覆盖B
而不是定义T
,从而节省了内存:
The advantage of this approach is that, if memory is an issue, you can overwrite B
instead of defining T
, thus saving memory:
[m n] = size(A);
[M N] = size(B);
B = permute(reshape(B,M,n,[]),[2 1 3]);
B = permute(reshape(B,n,m,[],size(B,3)),[2 1 3 4]);
C = cell2mat(squeeze(mat2cell(bsxfun(@times,B,A),m,n,ones(1,M/m),ones(1,N/n))));
这篇关于将小矩阵乘以大矩阵的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!