问题描述
我有一个4D xarray数据集.我想在特定维度(此处为时间)的两个变量之间进行线性回归,并将回归参数保留在3D数组(其余维度)中.通过使用此序列号,我设法获得了想要的结果,但是速度很慢:
I have a 4D xarray Dataset. I want to carry out a linear regression between two variables on a specific dimension (here time), and keep the regression parameters in a 3D array (the remaining dimensions).I managed to get the results I want by using this serial code, but it is rather slow:
# add empty arrays to store results of the regression
res_shape = tuple(v for k,v in ds[x].sizes.items() if k != 'year')
res_dims = tuple(k for k,v in ds[x].sizes.items() if k != 'year')
ds[sl] = (res_dims, np.empty(res_shape, dtype='float32'))
ds[inter] = (res_dims, np.empty(res_shape, dtype='float32'))
# Iterate in kept dimensions
for lat in ds.coords['latitude']:
for lon in ds.coords['longitude']:
for duration in ds.coords['duration']:
locator = {'longitude':lon, 'latitude':lat, 'duration':duration}
sel = ds.loc[locator]
res = scipy.stats.linregress(sel[x], sel[y])
ds[sl].loc[locator] = res.slope
ds[inter].loc[locator] = res.intercept
如何加快和并行化此操作?
How could I speed-up and parallelize this operation?
我知道 apply_ufunc
可能是一个选项(可以与dask并行化),但是我没有设法正确设置参数.
I understand that apply_ufunc
might be an option (and could be parallelized with dask), but I did not managed to get the parameters right.
以下问题相关,但没有答案:
The following questions are related but without an answer:
将先前的编辑移至答案
推荐答案
可以使用 apply_ufunc将
通过像这样传递 scipy.stats.linregress
(和其他非ufuncs)应用于xarray数据集.() vectorize = True
:
It is possible to apply scipy.stats.linregress
(and other non-ufuncs) to the xarray Dataset using apply_ufunc()
by passing vectorize=True
like so:
# return a tuple of DataArrays
res = xr.apply_ufunc(scipy.stats.linregress, ds[x], ds[y],
input_core_dims=[['year'], ['year']],
output_core_dims=[[], [], [], [], []],
vectorize=True)
# add the data to the existing dataset
for arr_name, arr in zip(array_names, res):
ds[arr_name] = arr
尽管仍然是串行的,但在这种特定情况下, apply_ufunc
比循环实现快36倍.
Although still serial, apply_ufunc
is around 36x faster than the loop implementation in this specific case.
但是,仍然无法使用dask进行并行化,例如 scipy.stats.linregress
中的输出:
However the parallelization with dask is still not implemented with multiple output like the one from scipy.stats.linregress
:
这篇关于使用xarray,如何并行处理多维数据集上的一维操作?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!