问题描述
我想使用scikit-learn的 GridSearchCV 确定随机森林模型的一些超级参数.我的数据是时间相关的,看起来像
I'd like to use scikit-learn's GridSearchCV to determine some hyper parameters for a random forest model. My data is time dependent and looks something like
import pandas as pd
train = pd.DataFrame({'date': pd.DatetimeIndex(['2012-1-1', '2012-9-30', '2013-4-3', '2014-8-16', '2015-3-20', '2015-6-30']),
'feature1': [1.2, 3.3, 2.7, 4.0, 8.2, 6.5],
'feature2': [4, 4, 10, 3, 10, 9],
'target': [1,2,1,3,2,2]})
>>> train
date feature1 feature2 target
0 2012-01-01 1.2 4 1
1 2012-09-30 3.3 4 2
2 2013-04-03 2.7 10 1
3 2014-08-16 4.0 3 3
4 2015-03-20 8.2 10 2
5 2015-06-30 6.5 9 2
如何实现以下交叉验证折叠技术?
How can I implement the following cross validation folding technique?
train:(2012, 2013) - test:(2014)
train:(2013, 2014) - test:(2015)
也就是说,我想使用2年的历史观测数据来训练模型,然后在接下来的一年中测试其准确性.
That is, I want to use 2 years of historic observations to train a model and then test its accuracy in the subsequent year.
推荐答案
您只需要将带有拆分的可迭代对象传递给GridSearchCV.此拆分应采用以下格式:
You just have to pass an iterable with the splits to GridSearchCV. This split should have the following format:
[
(split1_train_idxs, split1_test_idxs),
(split2_train_idxs, split2_test_idxs),
(split3_train_idxs, split3_test_idxs),
...
]
要获取idx,您可以执行以下操作:
To get the idxs you can do something like this:
groups = df.groupby(df.date.dt.year).groups
# {2012: [0, 1], 2013: [2], 2014: [3], 2015: [4, 5]}
sorted_groups = [value for (key, value) in sorted(groups.items())]
# [[0, 1], [2], [3], [4, 5]]
cv = [(sorted_groups[i] + sorted_groups[i+1], sorted_groups[i+2])
for i in range(len(sorted_groups)-2)]
这看起来像这样:
[([0, 1, 2], [3]), # idxs of first split as (train, test) tuple
([2, 3], [4, 5])] # idxs of second split as (train, test) tuple
那么你可以做:
GridSearchCV(estimator, param_grid, cv=cv, ...)
这篇关于scikit-learn交叉验证针对时间序列数据的自定义拆分的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!