问题描述
基本上,我想将列索引视为超参数.然后调整这个超参数以及管道中的其他模型超参数.在下面的示例中,col_idx
是我的超参数.我自己定义了一个名为log_columns
的函数,它可以对某些列进行日志转换,该函数可以传入FunctionTransformer
.然后将 FunctionTransformer 和模型放入管道中.
Basically, I want to treat the column index as a hyperparameter. Then tune this hyperparameter along with other model hyperparameters in the pipeline. In my example below, the col_idx
is my hyperparameter. I self-defined a function called log_columns
that can perform log transformation on certain columns and the function can be passed into FunctionTransformer
. Then put FunctionTransformer and model into the pipeline.
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.datasets import load_digits
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import FunctionTransformer
def log_columns(X, col_idx = None):
log_func = np.vectorize(np.log)
if col_idx is None:
return X
for idx in col_idx:
X[:,idx] = log_func(X[:,idx])
return X
pipe = make_pipeline(FunctionTransformer(log_columns, ), PCA(), SVC())
param_grid = dict(functiontransformer__col_idx = [None, [1]],
pca__n_components=[2, 5, 10],
svc__C=[0.1, 10, 100],
)
grid_search = GridSearchCV(pipe, param_grid=param_grid)
digits = load_digits()
res = grid_search.fit(digits.data, digits.target)
然后,我收到以下错误消息:
Then, I received the following error message:
ValueError: Invalid parameter col_idx for estimator
FunctionTransformer(accept_sparse=False, check_inverse=True,
func=<function log_columns at 0x1764998c8>, inv_kw_args=None,
inverse_func=None, kw_args=None, pass_y='deprecated',
validate=None). Check the list of available parameters with
`estimator.get_params().keys()`.
我不确定 FunctionTransformer
是否允许我做我期望的事情.如果没有,我很想知道其他优雅的方法.谢谢!
I am not sure if FunctionTransformer
allows me to do what I expected. If not, I am eager to know other elegant methods. Thanks!
推荐答案
col_idx
不是 FunctionTransformer
类的有效参数,而是 kw_args
是.kw_args
是 func
附加关键字参数的字典.在你的情况下,唯一的关键字参数是 col_idx
.
col_idx
is not a valid parameter for FunctionTransformer
class, but kw_args
is.kw_args
is a dictionary of additional keyword arguments of func
. In your case,the only keyword argument is col_idx
.
试试这个:
param_grid = dict(
functiontransformer__kw_args=[
{'col_idx': None},
{'col_idx': [1]}
],
pca__n_components=[2, 5, 10],
svc__C=[0.1, 10, 100],
)
这篇关于如何将 FunctionTransformer 与 GridSearchCV 一起制作成管道?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!