使用插入符号包应用k倍交叉验证模型

使用插入符号包应用k倍交叉验证模型

本文介绍了使用插入符号包应用k倍交叉验证模型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

首先让我说,我已经阅读了很多有关交叉验证的文章,而且似乎有很多困惑。我的理解很简单:

Let me start by saying that I have read many posts on Cross Validation and it seems there is much confusion out there. My understanding of that it is simply this:


  1. 执行k折交叉验证,即10折以了解10折的平均误差。

  2. 如果可以接受,则在完整的数据集上训练模型。

我正在尝试在R中使用 rpart 并利用插入符程序包构建决策树。以下是我正在使用的代码。

I am attempting to build a decision tree using rpart in R and taking advantage of the caret package. Below is the code I am using.

# load libraries
library(caret)
library(rpart)

# define training control
train_control<- trainControl(method="cv", number=10)

# train the model
model<- train(resp~., data=mydat, trControl=train_control, method="rpart")

# make predictions
predictions<- predict(model,mydat)

# append predictions
mydat<- cbind(mydat,predictions)

# summarize results
confusionMatrix<- confusionMatrix(mydat$predictions,mydat$resp)

我有一个关于插入符号训练应用程序的问题。我已阅读火车部分在重采样过程中哪个状态被确定为最佳参数集。

I have one question regarding the caret train application. I have read A Short Introduction to the caret Package train section which states during the resampling process the "optimal parameter set" is determined.

在我的示例中,我是否正确编码了?我是否需要在代码中定义 rpart 参数,还是我的代码足够?

In my example have I coded it up correctly? Do I need to define the rpart parameters within my code or is my code sufficient?

推荐答案

在执行k倍交叉验证时,您已经对每个样本进行了预测,仅对10种以上的模型进行了预测(假设k = 10)。
无需对完整数据进行预测,因为您已经从k个不同模型中获得了它们的预测。

when you perform k-fold cross validation you are already making a prediction for each sample, just over 10 different models (presuming k = 10).There is no need make a prediction on the complete data, as you already have their predictions from the k different models.

您可以做的是以下操作:

What you can do is the following:

train_control<- trainControl(method="cv", number=10, savePredictions = TRUE)

然后

model<- train(resp~., data=mydat, trControl=train_control, method="rpart")

如果您想以一种不错的格式查看观察值和预测值,只需输入:

if you want to see the observed and predictions in a nice format you simply type:

model$pred

同样,对于问题的第二部分,插入符号也应处理所有参数。如果需要,可以手动尝试调整参数。

Also for the second part of your question, caret should handle all the parameter stuff. You can manually try tune parameters if you desire.

这篇关于使用插入符号包应用k倍交叉验证模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-13 19:35
查看更多