本文介绍了ROC曲线好,但精度-调出曲线差的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一些不太了解的机器学习结果.我正在使用python sciki-learn,具有2个以上的14个功能的百万个数据. 精确度"曲线上"ab"的分类看起来很差,但是Ab的ROC看起来和大多数其他组的分类一样好.有什么可以解释的?
I have some machine learning results that I don't quite understand. I am using python sciki-learn, with 2+ million data of about 14 features. The classification of 'ab' looks pretty bad on the precision-recall curve, but the ROC for Ab looks just as good as most other groups' classification. What can explain that?
推荐答案
类不平衡.
与ROC曲线不同,PR曲线对不平衡非常敏感.如果针对不平衡数据优化分类器以获得良好的AUC,则很可能会获得较差的精度调用结果.
Unlike the ROC curve, PR curves are very sensitive to imbalance. If you optimize your classifier for good AUC on an unbalanced data you are likely to obtain poor precision-recall results.
这篇关于ROC曲线好,但精度-调出曲线差的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!