问题描述
我是新的火花,SparkR一般所有HDFS相关的技术。我最近安装了星火1.5.0和SparkR运行一些简单的code:
I'm new to Spark, SparkR and generally all HDFS-related technologies. I've installed recently Spark 1.5.0 and run some simple code with SparkR:
Sys.setenv(SPARK_HOME="/private/tmp/spark-1.5.0-bin-hadoop2.6")
.libPaths("/private/tmp/spark-1.5.0-bin-hadoop2.6/R/lib")
require('SparkR')
require('data.table')
sc <- sparkR.init(master="local")
sqlContext <- sparkRSQL.init(sc)
hiveContext <- sparkRHive.init(sc)
n = 1000
x = data.table(id = 1:n, val = rnorm(n))
Sys.time()
xs <- createDataFrame(sqlContext, x)
Sys.time()
在code立即执行。然而,当我将其更改为ñ= 1000000
需要两个 Sys.time()
电话之间约4分钟(时间)。当我在控制台检查这些职位上的端口:4040,工作为 N = 1000
具有0.2秒的持续时间和作业为ñ= 1000000
0.3秒。难道我做错了什么?
The code executes immediately. However when I change it to n = 1000000
it takes about 4 minutes (time between two Sys.time()
calls). When I check these jobs in console on port :4040, job for n = 1000
has duration 0.2s, and job for n = 1000000
0.3s. Am I doing something wrong?
推荐答案
您并没有做什么特别错误的。这只是不同因素组合的效果:
You're not doing anything particularly wrong. It is just an effect of a combination of different factors:
-
createDataFrame
,因为它是当前实现(星火1.5.1)是缓慢的。正是在 SPARK-8277 描述的已知问题。 - 目前的实现并不以
data.table
打好。 - 基,R是相对较慢。聪明的人说,这是一个功能不是一个错误,但它仍然是值得考虑的。
createDataFrame
as it is currently (Spark 1.5.1) implemented is slow. It is a known issue described in SPARK-8277.- Current implementation doesn't play well with
data.table
. - Base R is relatively slow. Smart people say it is a feature not a bug but it is still something to consider.
直到SPARK-8277解决了没有什么可以做,但是有两个选择,你可以试试:
Until SPARK-8277 is resolved there is not much you can do but there two options you can try:
-
使用普通的旧式
data.frame
而不是data.table
的。利用航班数据集(227496行,14列):
use plain old
data.frame
instead ofdata.table
. Using flights dataset (227496 rows, 14 columns):
df <- read.csv("flights.csv")
microbenchmark::microbenchmark(createDataFrame(sqlContext, df), times=3)
## Unit: seconds
## expr min lq mean median
## createDataFrame(sqlContext, df) 96.41565 97.19515 99.08441 97.97465
## uq max neval
## 100.4188 102.8629 3
相比, data.table
dt <- data.table::fread("flights.csv")
microbenchmark::microbenchmark(createDataFrame(sqlContext, dt), times=3)
## Unit: seconds
## expr min lq mean median
## createDataFrame(sqlContext, dt) 378.8534 379.4482 381.2061 380.043
## uq max neval
## 382.3825 384.722 3
写入到磁盘,并使用火花CSV
来直接加载数据到数据框星火没有与R.那样疯狂的直接互动,因为它听起来:
Write to disk and use spark-csv
to load data directly to Spark DataFrame without direct interaction with R. As crazy as it sounds:
dt <- data.table::fread("flights.csv")
write_and_read <- function() {
write.csv(dt, tempfile(), row.names=FALSE)
read.df(sqlContext, "flights.csv",
source = "com.databricks.spark.csv",
header = "true",
inferSchema = "true"
)
}
## Unit: seconds
## expr min lq mean median
## write_and_read() 2.924142 2.959085 2.983008 2.994027
## uq max neval
## 3.01244 3.030854 3
我真的不知道,如果真的是有意义的推动,可在R上处理的数据摆在首位,以星火,但让我们不要纠缠于这一点。
I am not really sure if really it makes sense to push data that can be handled in R to Spark in the first place but lets not dwell on that.
修改
这问题应该由在星火1.6.0解决
This issue should be resolved by SPARK-11086 in Spark 1.6.0.
这篇关于SparkR瓶颈createDataFrame?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!