问题描述
鉴于上述(树枝)条件存在,我猜测这是条件概率.不过我不是很清楚.
I am guessing that it is conditional probability given that the above (tree branch) condition exists. However, I am not clear on it.
如果您想了解有关所用数据的更多信息或我们如何获得此图表,请访问:http://machinelearningmastery.com/visualize-gradient-boosting-decision-trees-xgboost-python/
If you want to read more about the data used or how do we get this diagram then go to : http://machinelearningmastery.com/visualize-gradient-boosting-decision-trees-xgboost-python/
推荐答案
属性 leaf
是预测值.换句话说,如果树模型的评估在那个终端节点(又名叶节点)结束,那么这就是返回的值.
Attribute leaf
is the predicted value. In other words, if the evaluation of a tree model ends at that terminal node (aka leaf node), then this is the value that is returned.
在伪代码中(树模型最左边的分支):
In pseudocode (the left-most branch of your tree model):
if(f1 < 127.5){
if(f7 < 28.5){
if(f5 < 45.4){
return 0.167528f;
} else {
return 0.05f;
}
}
}
这篇关于下面xgboost模型树图中'leaf'的值是什么意思?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!