如何在多类分类中使用tf

如何在多类分类中使用tf

本文介绍了Tensorflow:如何在多类分类中使用tf.keras.metrics?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想在训练神经网络时使用以下一些指标:

I want to use some of these metrics when training my neural network:

METRICS = [
  keras.metrics.TruePositives(name='tp'),
  keras.metrics.FalsePositives(name='fp'),
  keras.metrics.TrueNegatives(name='tn'),
  keras.metrics.FalseNegatives(name='fn'),
  keras.metrics.Precision(name='precision'),
  keras.metrics.Recall(name='recall'),
  keras.metrics.CategoricalAccuracy(name='acc'),
  keras.metrics.AUC(name='auc'),
]

BATCH_SIZE = 1024
SHUFFLE_BUFFER_SIZE = 4000
train_dataset = tf.data.Dataset.from_tensor_slices((sent_vectors, labels))
train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)

model = tf.keras.Sequential()
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(embed_dim)))
for units in [256, 256]:
    model.add(tf.keras.layers.Dense(units, activation='relu'))
model.add(tf.keras.layers.Dense(4, activation='softmax'))
model.compile(optimizer='adam',
          loss='sparse_categorical_crossentropy',
          metrics=METRICS)
model.fit(
    train_dataset,
    epochs=100)

但是我得到了Shapes (None, 4) and (None, 1) are incompatible.我相信这是因为我正在对4类进行多类分类,但是度量是根据二进制分类计算的.如何为多类分类调整代码?

But I get Shapes (None, 4) and (None, 1) are incompatible. I believe this is because I am doing multiclass classification on 4 classes but the metrics are calculated based on binary classification. How do I adjust my code for multiclass classification?

更新:我有兴趣在学习过程中收集指标,就像 Tensorflow不平衡分类,而不仅仅是在拟合过程结束时.

Update: I am interested in gathering the metrics during the learning process like in Tensorflow Imbalanced Classification, not just at the end of the fitting process.

其他信息:我的输入数据是形状为sent_vectors.shape = (number_examples, 65, 300)labels=(number_examples, 1)的numpy数组.我有4个标签:0-3.

Additional infos:My input data are numpy arrays with the shape sent_vectors.shape = (number_examples, 65, 300) and labels=(number_examples, 1). I have 4 labels: 0-3.

Stacktrace:

Stacktrace:

ValueErrorTraceback (most recent call last)
<ipython-input-46-2b73afaf7726> in <module>
      1 model.fit(
      2     train_dataset,
----> 3     epochs=10)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    726         max_queue_size=max_queue_size,
    727         workers=workers,
--> 728         use_multiprocessing=use_multiprocessing)
    729
    730   def evaluate(self,

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
    322                 mode=ModeKeys.TRAIN,
    323                 training_context=training_context,
--> 324                 total_epochs=epochs)
    325             cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
    326

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
    121         step=step, mode=mode, size=current_batch_size) as batch_logs:
    122       try:
--> 123         batch_outs = execution_function(iterator)
    124       except (StopIteration, errors.OutOfRangeError):
    125         # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in execution_function(input_fn)
     84     # `numpy` translates Tensors to values in Eager mode.
     85     return nest.map_structure(_non_none_constant_value,
---> 86                               distributed_function(input_fn))
     87
     88   return execution_function

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in __call__(self, *args, **kwds)
    455
    456     tracing_count = self._get_tracing_count()
--> 457     result = self._call(*args, **kwds)
    458     if tracing_count == self._get_tracing_count():
    459       self._call_counter.called_without_tracing()

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in _call(self, *args, **kwds)
    501       # This is the first call of __call__, so we have to initialize.
    502       initializer_map = object_identity.ObjectIdentityDictionary()
--> 503       self._initialize(args, kwds, add_initializers_to=initializer_map)
    504     finally:
    505       # At this point we know that the initialization is complete (or less

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    406     self._concrete_stateful_fn = (
    407         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 408             *args, **kwds))
    409
    410     def invalid_creator_scope(*unused_args, **unused_kwds):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   1846     if self.input_signature:
   1847       args, kwargs = None, None
-> 1848     graph_function, _, _ = self._maybe_define_function(args, kwargs)
   1849     return graph_function
   1850

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2148         graph_function = self._function_cache.primary.get(cache_key, None)
   2149         if graph_function is None:
-> 2150           graph_function = self._create_graph_function(args, kwargs)
   2151           self._function_cache.primary[cache_key] = graph_function
   2152         return graph_function, args, kwargs

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2039             arg_names=arg_names,
   2040             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2041             capture_by_value=self._capture_by_value),
   2042         self._function_attributes,
   2043         # Tell the ConcreteFunction to clean up its graph once it goes out of

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    913                                           converted_func)
    914
--> 915       func_outputs = python_func(*func_args, **func_kwargs)
    916
    917       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    356         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    357         # the function a weak reference to itself to avoid a reference cycle.
--> 358         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    359     weak_wrapped_fn = weakref.ref(wrapped_fn)
    360

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in distributed_function(input_iterator)
     71     strategy = distribution_strategy_context.get_strategy()
     72     outputs = strategy.experimental_run_v2(
---> 73         per_replica_function, args=(model, x, y, sample_weights))
     74     # Out of PerReplica outputs reduce or pick values to return.
     75     all_outputs = dist_utils.unwrap_output_dict(

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in experimental_run_v2(self, fn, args, kwargs)
    758       fn = autograph.tf_convert(fn, ag_ctx.control_status_ctx(),
    759                                 convert_by_default=False)
--> 760       return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    761
    762   def reduce(self, reduce_op, value, axis):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in call_for_each_replica(self, fn, args, kwargs)
   1785       kwargs = {}
   1786     with self._container_strategy().scope():
-> 1787       return self._call_for_each_replica(fn, args, kwargs)
   1788
   1789   def _call_for_each_replica(self, fn, args, kwargs):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in _call_for_each_replica(self, fn, args, kwargs)
   2130         self._container_strategy(),
   2131         replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)):
-> 2132       return fn(*args, **kwargs)
   2133
   2134   def _reduce_to(self, reduce_op, value, destinations):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/autograph/impl/api.py in wrapper(*args, **kwargs)
    290   def wrapper(*args, **kwargs):
    291     with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
--> 292       return func(*args, **kwargs)
    293
    294   if inspect.isfunction(func) or inspect.ismethod(func):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in train_on_batch(model, x, y, sample_weight, class_weight, reset_metrics)
    262       y,
    263       sample_weights=sample_weights,
--> 264       output_loss_metrics=model._output_loss_metrics)
    265
    266   if reset_metrics:

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py in train_on_batch(model, inputs, targets, sample_weights, output_loss_metrics)
    313     outs = [outs]
    314   metrics_results = _eager_metrics_fn(
--> 315       model, outs, targets, sample_weights=sample_weights, masks=masks)
    316   total_loss = nest.flatten(total_loss)
    317   return {'total_loss': total_loss,

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py in _eager_metrics_fn(model, outputs, targets, sample_weights, masks)
     72         masks=masks,
     73         return_weighted_and_unweighted_metrics=True,
---> 74         skip_target_masks=model._prepare_skip_target_masks())
     75
     76   # Add metric results from the `add_metric` metrics.

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py in _handle_metrics(self, outputs, targets, skip_target_masks, sample_weights, masks, return_weighted_metrics, return_weighted_and_unweighted_metrics)
   2061           metric_results.extend(
   2062               self._handle_per_output_metrics(self._per_output_metrics[i],
-> 2063                                               target, output, output_mask))
   2064         if return_weighted_and_unweighted_metrics or return_weighted_metrics:
   2065           metric_results.extend(

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py in _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights)
   2012       with K.name_scope(metric_name):
   2013         metric_result = training_utils.call_metric_function(
-> 2014             metric_fn, y_true, y_pred, weights=weights, mask=mask)
   2015         metric_results.append(metric_result)
   2016     return metric_results

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_utils.py in call_metric_function(metric_fn, y_true, y_pred, weights, mask)
   1065
   1066   if y_pred is not None:
-> 1067     return metric_fn(y_true, y_pred, sample_weight=weights)
   1068   # `Mean` metric only takes a single value.
   1069   return metric_fn(y_true, sample_weight=weights)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/metrics.py in __call__(self, *args, **kwargs)
    191     from tensorflow.python.keras.distribute import distributed_training_utils  # pylint:disable=g-import-not-at-top
    192     return distributed_training_utils.call_replica_local_fn(
--> 193         replica_local_fn, *args, **kwargs)
    194
    195   @property

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/distribute/distributed_training_utils.py in call_replica_local_fn(fn, *args, **kwargs)
   1133     with strategy.scope():
   1134       return strategy.extended.call_for_each_replica(fn, args, kwargs)
-> 1135   return fn(*args, **kwargs)
   1136
   1137

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/metrics.py in replica_local_fn(*args, **kwargs)
    174     def replica_local_fn(*args, **kwargs):
    175       """Updates the state of the metric in a replica-local context."""
--> 176       update_op = self.update_state(*args, **kwargs)  # pylint: disable=not-callable
    177       with ops.control_dependencies([update_op]):
    178         result_t = self.result()  # pylint: disable=not-callable

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/utils/metrics_utils.py in decorated(metric_obj, *args, **kwargs)
     73
     74     with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs):
---> 75       update_op = update_state_fn(*args, **kwargs)
     76     if update_op is not None:  # update_op will be None in eager execution.
     77       metric_obj.add_update(update_op)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/metrics.py in update_state(self, y_true, y_pred, sample_weight)
    881         y_pred,
    882         thresholds=self.thresholds,
--> 883         sample_weight=sample_weight)
    884
    885   def result(self):

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/utils/metrics_utils.py in update_confusion_matrix_variables(variables_to_update, y_true, y_pred, thresholds, top_k, class_id, sample_weight)
    276    y_true], _ = ragged_assert_compatible_and_get_flat_values([y_pred, y_true],
    277                                                              sample_weight)
--> 278   y_pred.shape.assert_is_compatible_with(y_true.shape)
    279
    280   if not any(

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py in assert_is_compatible_with(self, other)
   1113     """
   1114     if not self.is_compatible_with(other):
-> 1115       raise ValueError("Shapes %s and %s are incompatible" % (self, other))
   1116
   1117   def most_specific_compatible_shape(self, other):

ValueError: Shapes (None, 4) and (None, 1) are incompatible

推荐答案

更新:

OP编辑他的问题时,我决定编辑我的解决方案,以提供更紧凑的答案:

Update:

As OP edited his question, I decided to edit my solution either with the intention of providing a more compact answer:

导入并定义以后需要的所有内容:

import numpy as np
from numpy import random as random
import tensorflow as tf
import keras
import keras.backend as K

tf.config.experimental_run_functions_eagerly(False)

VERBOSE = 1

keras.backend.clear_session()
sess = tf.compat.v1.Session()
sess.as_default()


### Just for dummy data
sent_vectors = random.rand(100, 65, 300).astype(np.float32)
labels = random.randint(0, 4, (100, 1))
labels = np.squeeze(labels, 1)

NUM_CLASSES = np.max(labels) + 1
BATCH_SIZE = 10
SHUFFLE_BUFFER_SIZE = 200
embed_dim = 8
### Just for dummy data

创建自定义指标:

class CategoricalTruePositives(tf.keras.metrics.Metric):

    def __init__(self, num_classes, batch_size,
                 name="categorical_true_positives", **kwargs):
        super(CategoricalTruePositives, self).__init__(name=name, **kwargs)

        self.batch_size = batch_size
        self.num_classes = num_classes

        self.cat_true_positives = self.add_weight(name="ctp", initializer="zeros")

    def update_state(self, y_true, y_pred, sample_weight=None):

        y_true = K.argmax(y_true, axis=-1)
        y_pred = K.argmax(y_pred, axis=-1)
        y_true = K.flatten(y_true)

        true_poss = K.sum(K.cast((K.equal(y_true, y_pred)), dtype=tf.float32))

        self.cat_true_positives.assign_add(true_poss)

    def result(self):

        return self.cat_true_positives

首先仅使用多标签评估指标(包括我们的自定义功能)来编译和拟合模型:

METRICS = [
  tf.keras.metrics.CategoricalAccuracy(name='acc'),
  CategoricalTruePositives(NUM_CLASSES, BATCH_SIZE),
]

# Transform labels to onehot encoding for metric CategoricalAccuracy
labels = tf.compat.v1.one_hot(labels, depth=NUM_CLASSES)
train_dataset = tf.data.Dataset.from_tensor_slices((sent_vectors, labels))
train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)

model = tf.keras.Sequential()
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(embed_dim)))

for units in [256, 256]:
    model.add(tf.keras.layers.Dense(units, activation='relu'))
model.add(tf.keras.layers.Dense(4, activation='softmax'))


model.compile(optimizer='adam',
          loss='categorical_crossentropy',
          metrics=[METRICS])
model.fit(
    train_dataset,
    epochs=10,
    verbose=VERBOSE,
    shuffle=True)

预测结果并对其进行后处理:

result = model.predict(train_dataset)

pred_size = sent_vectors.shape[0]

preds = K.argmax(result, axis=-1)
preds = K.one_hot(preds, NUM_CLASSES)

print("\nTrue positives per classes:")
for i in range(4):
    m = tf.keras.metrics.TruePositives(name='tp')
    m.update_state(labels[:, i], preds[:, i])
    print("Class {} true positives: {}".format(i, m.result()))

退出:

Epoch 1/10
10/10 [==============================] - 3s 328ms/step - loss: 1.4226 - acc: 0.2300 - categorical_true_positives: 23.0000
Epoch 2/10
10/10 [==============================] - 0s 21ms/step - loss: 1.3876 - acc: 0.2900 - categorical_true_positives: 29.0000
Epoch 3/10
10/10 [==============================] - 0s 20ms/step - loss: 1.3721 - acc: 0.2800 - categorical_true_positives: 28.0000
Epoch 4/10
10/10 [==============================] - 0s 20ms/step - loss: 1.3628 - acc: 0.2900 - categorical_true_positives: 29.0000
Epoch 5/10
10/10 [==============================] - 0s 22ms/step - loss: 1.3447 - acc: 0.3800 - categorical_true_positives: 38.0000
Epoch 6/10
10/10 [==============================] - 0s 22ms/step - loss: 1.3187 - acc: 0.3800 - categorical_true_positives: 38.0000
Epoch 7/10
10/10 [==============================] - 0s 22ms/step - loss: 1.2653 - acc: 0.4300 - categorical_true_positives: 43.0000
Epoch 8/10
10/10 [==============================] - 0s 21ms/step - loss: 1.1760 - acc: 0.6000 - categorical_true_positives: 60.0000
Epoch 9/10
10/10 [==============================] - 0s 22ms/step - loss: 1.1809 - acc: 0.4600 - categorical_true_positives: 46.0000
Epoch 10/10
10/10 [==============================] - 0s 22ms/step - loss: 1.2739 - acc: 0.3800 - categorical_true_positives: 38.0000

True positives per classes:
Class 0 true positives: 16.0
Class 1 true positives: 0.0
Class 2 true positives: 5.0
Class 3 true positives: 7.0

注意:

我们可以认识到,真实肯定的总和与我们的训练结果不相等,这是因为我们是根据来自train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)的不同数据对模型进行训练和预测的.

We can recognize, that the true positives' sum is not equal with our training result, that is because we trained and predicted our model against a different data get from train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE).

这篇关于Tensorflow:如何在多类分类中使用tf.keras.metrics?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-13 19:07