问题描述
我正在尝试构建ML模型.但是,我在理解在哪里应用编码有困难.请参阅下面的步骤和功能,以复制我一直在遵循的过程.
首先,我将数据集分为训练和测试
: #导入重采样程序包从sklearn.naive_bayes导入MultinomialNB导入字符串从nltk.corpus导入停用词汇入从sklearn.model_selection导入train_test_split从sklearn.feature_extraction.text导入CountVectorizer从nltk.tokenize导入RegexpTokenizer从sklearn.utils导入重新采样从sklearn.metrics导入f1_score,precision_score,recall_score,precision_score#分为训练和测试集#测试计数矢量化器X = df [['Text']]y = df ['Label']X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state = 40)#返回一个数据框training_set = pd.concat([X_train,y_train],轴= 1)
现在我应用(欠)采样:
#分离类垃圾邮件= training_set [training_set.Label == 1]not_spam = training_set [training_set.Label == 0]#多数采样不足欠采样=重新采样(非垃圾邮件,replace = True,n_samples = len(spam),#将样本数量设置为等于少数类的数量random_state = 40)#返回新的训练集undersample_train = pd.concat([垃圾邮件,欠采样])
然后应用所选的算法:
full_result = pd.DataFrame(列= [预处理",模型",精度",调用","F1分数",准确性"))X,y = BOW(undersample_train)full_result = full_result.append(training_naive(X_train,X_test,y_train,y_test,'Count Vectorize'),ignore_index = True)
其中BOW的定义如下
def BOW(数据):df_temp = data.copy(deep = True)df_temp = basic_preprocessing(df_temp)count_vectorizer = CountVectorizer(analyzer = fun)count_vectorizer.fit(df_temp ['Text'])list_corpus = df_temp [文本"] .tolist()list_labels = df_temp ["Label"].tolist()X = count_vectorizer.transform(list_corpus)返回X,list_labels
basic_preprocessing
的定义如下:
def basic_preprocessing(df):df_temp = df.copy(deep = True)df_temp = df_temp.rename(索引= str,列= {'Clean_Titles_2':'Text'})df_temp.loc [:,'Text'] = [df_temp ['Text'].values中x的text_prepare(x)#le = LabelEncoder()#le.fit(df_temp ['medical_specialty'])#df_temp.loc [:,'class_label'] = le.transform(df_temp ['medical_specialty'])tokenizer = RegexpTokenizer(r'\ w +')df_temp [令牌"] = df_temp [文本"] .apply(tokenizer.tokenize)返回df_temp
其中 text_prepare
是:
def text_prepare(text):REPLACE_BY_SPACE_RE = re.compile('[/(){} \ [\] \ | @ ,;]')BAD_SYMBOLS_RE = re.compile('[^ 0-9a-z#+ _]')停用词=设置(stopwords.words('english'))文字= text.lower()text = REPLACE_BY_SPACE_RE.sub('',text)#用文本中的空格替换REPLACE_BY_SPACE_RE符号text = BAD_SYMBOLS_RE.sub('',text)#从文本中删除BAD_SYMBOLS_RE中的符号单词= text.split()我= 0而我<len(字):如果停用词中的单词[i]:words.pop(i)别的:我+ = 1text =''.join(map(str,words))#从文本中删除停用词返回文字
和
def training_naive(X_train_naive,X_test_naive,y_train_naive,y_test_naive,preproc):clf = MultinomialNB()#高斯朴素贝叶斯clf.fit(X_train_naive,y_train_naive)res = pd.DataFrame(列= ['预处理','模型','精度','调用','F1得分','精度'])y_pred = clf.predict(X_test_naive)f1 = f1_score(y_pred,y_test_naive,平均值='加权')pres = precision_score(y_pred,y_test_naive,average ='weighted')rec =回忆分数(y_pred,y_test_naive,平均值='加权')acc = precision_score(y_pred,y_test_naive)res = res.append({'Preprocessing':preproc,'Model':'Naive Bayes','Precision':pres,'Recall':rec,'F1-score':f1,'Accuracy':acc},ignore_index = True)返回资源
如您所见,顺序为:
- 定义text_prepare以进行文本清理;
- 定义basic_preprocessing;
- 定义弓;
- 将数据集拆分为训练和测试;
- 应用采样;
- 应用算法.
我不了解的是如何正确编码文本,以使算法正常工作.我的数据集称为df,列为:
标签文字年1 bla bla bla 20000添加一些单词20121这只是一个示例19980不幸的是,该代码在2018年无法正常工作0我应该在哪里应用编码?20000我在这里想念什么?2005年
应用BOW时的顺序是错误的,因为出现此错误: ValueError:无法将字符串转换为浮点数:'如果...,请期待良好的结果'
我按照步骤操作(和代码=来自此链接:
I am trying to build a ML model. However I am having difficulties in understanding where to apply the encoding.Please see below the steps and functions to replicate the process I have been following.
First I split the dataset into train and test:
# Import the resampling package
from sklearn.naive_bayes import MultinomialNB
import string
from nltk.corpus import stopwords
import re
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import RegexpTokenizer
from sklearn.utils import resample
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
# Split into training and test sets
# Testing Count Vectorizer
X = df[['Text']]
y = df['Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
# Returning to one dataframe
training_set = pd.concat([X_train, y_train], axis=1)
Now I apply the (under) sampling:
# Separating classes
spam = training_set[training_set.Label == 1]
not_spam = training_set[training_set.Label == 0]
# Undersampling the majority
undersample = resample(not_spam,
replace=True,
n_samples=len(spam), #set the number of samples to equal the number of the minority class
random_state=40)
# Returning to new training set
undersample_train = pd.concat([spam, undersample])
And I apply the algorithm chosen:
full_result = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
X, y = BOW(undersample_train)
full_result = full_result.append(training_naive(X_train, X_test, y_train, y_test, 'Count Vectorize'), ignore_index = True)
where BOW is defined as follows
def BOW(data):
df_temp = data.copy(deep = True)
df_temp = basic_preprocessing(df_temp)
count_vectorizer = CountVectorizer(analyzer=fun)
count_vectorizer.fit(df_temp['Text'])
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels
basic_preprocessing
is defined as follows:
def basic_preprocessing(df):
df_temp = df.copy(deep = True)
df_temp = df_temp.rename(index = str, columns = {'Clean_Titles_2': 'Text'})
df_temp.loc[:, 'Text'] = [text_prepare(x) for x in df_temp['Text'].values]
#le = LabelEncoder()
#le.fit(df_temp['medical_specialty'])
#df_temp.loc[:, 'class_label'] = le.transform(df_temp['medical_specialty'])
tokenizer = RegexpTokenizer(r'\w+')
df_temp["Tokens"] = df_temp["Text"].apply(tokenizer.tokenize)
return df_temp
where text_prepare
is:
def text_prepare(text):
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]')
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]')
STOPWORDS = set(stopwords.words('english'))
text = text.lower()
text = REPLACE_BY_SPACE_RE.sub('', text) # replace REPLACE_BY_SPACE_RE symbols by space in text
text = BAD_SYMBOLS_RE.sub('', text) # delete symbols which are in BAD_SYMBOLS_RE from text
words = text.split()
i = 0
while i < len(words):
if words[i] in STOPWORDS:
words.pop(i)
else:
i += 1
text = ' '.join(map(str, words))# delete stopwords from text
return text
and
def training_naive(X_train_naive, X_test_naive, y_train_naive, y_test_naive, preproc):
clf = MultinomialNB() # Gaussian Naive Bayes
clf.fit(X_train_naive, y_train_naive)
res = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
y_pred = clf.predict(X_test_naive)
f1 = f1_score(y_pred, y_test_naive, average = 'weighted')
pres = precision_score(y_pred, y_test_naive, average = 'weighted')
rec = recall_score(y_pred, y_test_naive, average = 'weighted')
acc = accuracy_score(y_pred, y_test_naive)
res = res.append({'Preprocessing': preproc, 'Model': 'Naive Bayes', 'Precision': pres,
'Recall': rec, 'F1-score': f1, 'Accuracy': acc}, ignore_index = True)
return res
As you can see the order is:
- define text_prepare for text cleaning;
- define basic_preprocessing;
- define BOW;
- split the dataset into train and test;
- apply the sampling;
- apply the algorithm.
What I am not understanding is how to encode text correctly in order to make the algorithm working fine.My dataset is called df and columns are:
Label Text Year
1 bla bla bla 2000
0 add some words 2012
1 this is just an example 1998
0 unfortunately the code does not work 2018
0 where should I apply the encoding? 2000
0 What am I missing here? 2005
The order when I apply BOW is wrong as I get this error: ValueError: could not convert string to float: 'Expect a good results if ... '
I followed the steps (and code= from this link: kaggle.com/ruzarx/oversampling-smote-and-adasyn .However, the part of sampling is wrong as it should be done only to the train, so after the split. The principle should be: (1) split training/test; (2) apply resampling on the training set, so that the model is trained with balanced data; (3) apply model to test set and evaluate on it.
I will be happy to provide further information, data and/or code, but I think I have provided all the most relevant steps.
Thanks a lot.
You need to have a test BOW function that should reuse the count vectorizer model that was built during the training phase.
Think about using pipeline for reducing the code verbosity.
from sklearn.naive_bayes import MultinomialNB
import string
from nltk.corpus import stopwords
import re
from sklearn.model_selection import train_test_split
from io import StringIO
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import RegexpTokenizer
from sklearn.utils import resample
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
def fun(text):
remove_punc = [c for c in text if c not in string.punctuation]
remove_punc = ''.join(remove_punc)
cleaned = [w for w in remove_punc.split() if w.lower()
not in stopwords.words('english')]
return cleaned
# Testing Count Vectorizer
def BOW(data):
df_temp = data.copy(deep=True)
df_temp = basic_preprocessing(df_temp)
count_vectorizer = CountVectorizer(analyzer=fun)
count_vectorizer.fit(df_temp['Text'])
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels, count_vectorizer
def test_BOW(data, count_vectorizer):
df_temp = data.copy(deep=True)
df_temp = basic_preprocessing(df_temp)
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels
def basic_preprocessing(df):
df_temp = df.copy(deep=True)
df_temp = df_temp.rename(index=str, columns={'Clean_Titles_2': 'Text'})
df_temp.loc[:, 'Text'] = [text_prepare(x) for x in df_temp['Text'].values]
tokenizer = RegexpTokenizer(r'\w+')
df_temp["Tokens"] = df_temp["Text"].apply(tokenizer.tokenize)
return df_temp
def text_prepare(text):
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]')
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]')
STOPWORDS = set(stopwords.words('english'))
text = text.lower()
# replace REPLACE_BY_SPACE_RE symbols by space in text
text = REPLACE_BY_SPACE_RE.sub('', text)
# delete symbols which are in BAD_SYMBOLS_RE from text
text = BAD_SYMBOLS_RE.sub('', text)
words = text.split()
i = 0
while i < len(words):
if words[i] in STOPWORDS:
words.pop(i)
else:
i += 1
text = ' '.join(map(str, words)) # delete stopwords from text
return text
s = """Label Text Year
1 bla bla bla 2000
0 add some words 2012
1 this is just an example 1998
0 unfortunately the code does not work 2018
0 where should I apply the encoding? 2000
0 What am I missing here? 2005"""
df = pd.read_csv(StringIO(s), sep='\s{2,}')
X = df[['Text']]
y = df['Label']
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=40)
# Returning to one dataframe
training_set = pd.concat([X_train, y_train], axis=1)
# Separating classes
spam = training_set[training_set.Label == 1]
not_spam = training_set[training_set.Label == 0]
# Undersampling the majority
undersample = resample(not_spam,
replace=True,
# set the number of samples to equal the number of the minority class
n_samples=len(spam),
random_state=40)
# Returning to new training set
undersample_train = pd.concat([spam, undersample])
full_result = pd.DataFrame(columns=['Preprocessing', 'Model', 'Precision',
'Recall', 'F1-score', 'Accuracy'])
train_x, train_y, count_vectorizer = BOW(undersample_train)
testing_set = pd.concat([X_test, y_test], axis=1)
test_x, test_y = test_BOW(testing_set, count_vectorizer)
def training_naive(X_train_naive, X_test_naive, y_train_naive, y_test_naive, preproc):
clf = MultinomialNB() # Gaussian Naive Bayes
clf.fit(X_train_naive, y_train_naive)
res = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
y_pred = clf.predict(X_test_naive)
f1 = f1_score(y_pred, y_test_naive, average = 'weighted')
pres = precision_score(y_pred, y_test_naive, average = 'weighted')
rec = recall_score(y_pred, y_test_naive, average = 'weighted')
acc = accuracy_score(y_pred, y_test_naive)
res = res.append({'Preprocessing': preproc, 'Model': 'Naive Bayes', 'Precision': pres,
'Recall': rec, 'F1-score': f1, 'Accuracy': acc}, ignore_index = True)
return res
full_result = full_result.append(training_naive(train_x, test_x, train_y, test_y, 'Count Vectorize'), ignore_index = True)
这篇关于在ML分类器中编码文本的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!