本文介绍了Scikit学习在DecisionTreeClassifier上使用GridSearchCV的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我尝试在DecisionTreeClassifier上使用GridSearchCV,但出现以下错误:TypeError:必须以DecisionTreeClassifier实例作为第一个参数来调用未绑定方法get_params()(而是什么也不做)
I tried to use GridSearchCV on DecisionTreeClassifier, but get the following error:TypeError: unbound method get_params() must be called with DecisionTreeClassifier instance as first argument (got nothing instead)
这是我的代码:
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import cross_val_score
X, Y = createDataSet(filename)
tree_para = {'criterion':['gini','entropy'],'max_depth':[4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150]}
clf = GridSearchCV(DecisionTreeClassifier, tree_para, cv=5)
clf.fit(X, Y)
推荐答案
在调用GridSearchCV
方法时,第一个参数应该是DecisionTreeClassifier
的实例化对象,而不是类的名称.应该是
In your call to GridSearchCV
method, the first argument should be an instantiated object of the DecisionTreeClassifier
instead of the name of the class. It should be
clf = GridSearchCV(DecisionTreeClassifier(), tree_para, cv=5)
请查看示例此处了解更多详细信息
Check out the example here for more details.
希望有帮助!
这篇关于Scikit学习在DecisionTreeClassifier上使用GridSearchCV的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!