问题描述
我将此问题发布到了Cross Validated论坛,后来意识到可能是可以在stackoverlfow中找到合适的受众。
I posted this question to Cross Validated forum and later realized may be this would find appropriate audience in stackoverlfow instead.
我正在寻找一种可以使用从python statsmodel获取的 fit
对象(结果),以馈入scikit-learn cross_validation方法的 cross_val_score
吗?
附加链接表明可能,但我没有成功。
I am looking for a way I can use the fit
object (result) ontained from python statsmodel to feed into cross_val_score
of scikit-learn cross_validation method?The attached link suggests that it may be possible but I have not succeeded.
我遇到以下错误
推荐答案
实际上,您不能直接在 statsmodels
上使用 cross_val_score
对象,因为接口不同:在statsmodels中
Indeed, you cannot use cross_val_score
directly on statsmodels
objects, because of different interface: in statsmodels
- 训练数据直接传递到构造函数中
- 一个单独的对象包含模型估计的结果
但是,您可以编写一个简单的包装器来制作 statsmodels
对象看起来像 sklearn
估算器:
However, you can write a simple wrapper to make statsmodels
objects look like sklearn
estimators:
import statsmodels.api as sm
from sklearn.base import BaseEstimator, RegressorMixin
class SMWrapper(BaseEstimator, RegressorMixin):
""" A universal sklearn-style wrapper for statsmodels regressors """
def __init__(self, model_class, fit_intercept=True):
self.model_class = model_class
self.fit_intercept = fit_intercept
def fit(self, X, y):
if self.fit_intercept:
X = sm.add_constant(X)
self.model_ = self.model_class(y, X)
self.results_ = self.model_.fit()
def predict(self, X):
if self.fit_intercept:
X = sm.add_constant(X)
return self.results_.predict(X)
此类包含正确的 fit
和预测
方法,并且可以与 sklearn
一起使用,例如交叉验证或包含在管道中。像这里:
This class contains correct fit
and predict
methods, and can be used with sklearn
, e.g. cross-validated or included into a pipeline. Like here:
from sklearn.datasets import make_regression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
X, y = make_regression(random_state=1, n_samples=300, noise=100)
print(cross_val_score(SMWrapper(sm.OLS), X, y, scoring='r2'))
print(cross_val_score(LinearRegression(), X, y, scoring='r2'))
您可以看到两个模型的输出相同,因为它们都是OLS模型,并且以相同的方式进行交叉验证。
You can see that the output of two models is identical, because they are both OLS models, cross-validated in the same way.
[0.28592315 0.37367557 0.47972639]
[0.28592315 0.37367557 0.47972639]
这篇关于结合使用statsmodel估计和scikit-learn交叉验证,是否可能?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!