本文介绍了错误:Tensorflow CNN尺寸的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

嗨。我是Tensorflow的新手,正在尝试使用CNN运行cifar10数据集。
我的网络由三层构成,例如


  1. 卷积+最大池化

  2. 完全连接的层

  3. Softmax层

以下是我的张量流模型代码。

15 def model(X, w, w2, w_o, p_keep_conv, p_keep_hidden):
16
17     layer1 = tf.nn.relu(tf.nn.conv2d(X, w,strides=[1, 1, 1, 1], padding='SAME'))
18     layer1 = tf.nn.max_pool(l1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
19
20     layer1 = tf.reshape(l1,[-1,w2.get_shape().as_list()[0]])
21     layer1 = tf.nn.dropout(l1, p_keep_conv)
22
23     layer2 = tf.nn.relu(tf.matmul(layer1, w2))
24     layer2 = tf.nn.dropout(l4, p_keep_hidden)
25
26     pyx = tf.matmul(layer2, w_o)
27     return pyx
28

输入的图像具有[-1、32、32、3]形状。(32 * 32像素,RGB)

由于最大池化的过滤器为[1,2,2,1],因此跨度为[1,2,2,1],输出通道为5,

我认为最大池化层和完全连接层之间的权重形式(以下代码中的w2)应为[5 * 16 * 16 * 3,125]。

(5:通道,16:32/2像素,3:RGB,125:输出#神经元)

以下是我的参数张量流代码。

60 trX = trX.reshape(-1, 32, 32, 3)  # 32x32x3 input img
61 teX = teX.reshape(-1, 32, 32, 3)  # 32x32x3 input img
62
63 X = tf.placeholder("float", [None, 32, 32, 3])
64 Y = tf.placeholder("float", [None, 10])
65
66 w = init_weights([5, 5, 3, 5])
67 w2 = init_weights([5*16*16*3, 125])
68 w_o = init_weights([125, 10])
69
70 p_keep_conv = tf.placeholder("float")
71 p_keep_hidden = tf.placeholder("float")
72
73 py_x = model(X, w, w2, w_o, p_keep_conv, p_keep_hidden)
74
75 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y))
76 #train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
77 train_op = tf.train.AdamOptimizer(1e-4).minimize(cost)
78 predict_op = tf.argmax(py_x, 1)
79

但是它向我显示如下错误。

Traceback (most recent call last):

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 715, in _do_call

return fn(*args)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 697, in _run_fn

status, run_metadata)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/contextlib.py", line 66, in __exit__

next(self.gen)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/errors.py", line 450, in raise_exception_on_not_ok_status

pywrap_tensorflow.TF_GetCode(status))

tensorflow.python.framework.errors.InvalidArgumentError: Input to reshape is a tensor with 6400 values, but the requested shape requires a multiple of 3840

[[Node: Reshape = Reshape[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](MaxPool, Reshape/shape)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File "convCifar.py", line 99, in <module>

p_keep_conv: 0.8, p_keep_hidden: 0.5})

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 372, in run

run_metadata_ptr)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 636, in _run

feed_dict_string, options, run_metadata)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 708, in _do_run

target_list, options, run_metadata)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/client/session.py", line 728, in _do_call

raise type(e)(node_def, op, message)

tensorflow.python.framework.errors.InvalidArgumentError: Input to reshape is a tensor with 6400 values, but the requested shape requires a multiple of 3840

[[Node: Reshape = Reshape[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](MaxPool, Reshape/shape)]]

Caused by op 'Reshape', defined at:

File "convCifar.py", line 82, in <module>

py_x = model(X, w, w4, w_o, p_keep_conv, p_keep_hidden)

File "convCifar.py", line 27, in model

l1 = tf.reshape(l1,[-1,w4.get_shape().as_list()[0]])

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1383, in reshape

name=name)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op

op_def=op_def)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/ops.py", line 2260, in create_op

original_op=self._default_original_op, op_def=op_def)

File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/ops.py", line 1230, in __init__

self._traceback = _extract_stack()



I think the problem is about the dimension of "w2"(weight between max pooling layer and fully connected layer). Also, I can not understand How the 6400 can be occurred.

如何解决该错误?

如果信息量很小,请告诉我。
谢谢!

Please let me know if the information is small.Thank you!

推荐答案

错误 tensorflow.python.framework.errors.InvalidArgumentError:要重塑的输入是具有6400值的张量,但请求的形状需要3840的倍数。表明输入张量 tf.reshape()第20行中的值不是3840的倍数。

The error tensorflow.python.framework.errors.InvalidArgumentError: Input to reshape is a tensor with 6400 values, but the requested shape requires a multiple of 3840 suggests that the input tensor of tf.reshape() in line 20 has a number of values that is not a multiple of 3840.

那是因为张量 l1 是' t在函数 model 中定义(您可能更早使用过,可能有6400个值)。您可能要设置 l1 = layer1 。请注意,在函数 model 中也未定义张量 l4

That's because tensor l1 isn't defined within function model (you might have used it earlier and it might have 6400 values). You probably want to set l1=layer1. Note that tensor l4 isn't defined in function model either.

请告诉我我的答案是否不能解决您的错误。

Please, let me know if my answer doesn't solve your error.

这篇关于错误:Tensorflow CNN尺寸的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-13 18:35