本文介绍了每类F1分数,可进行多类别分类的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在使用python和scikit-learn处理多类分类问题.目前,我正在使用classification_report
函数评估分类器的性能,并获得如下报告:
I'm working on a multiclass classification problem using python and scikit-learn. Currently, I'm using the classification_report
function to evaluate the performance of my classifier, obtaining reports like the following:
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
要进行进一步的分析,我对获得每个可用班级的每班级f1分数很感兴趣.也许是这样的:
To do further analysis, I'm interesting in obtaining the per-class f1 score of each of the classes available. Maybe something like this:
>>> print(calculate_f1_score(y_true, y_pred, target_class='class 0'))
0.67
在scikit-learn上有类似的内容吗?
Is there something like that available on scikit-learn?
推荐答案
来自f1_score
文档.
from sklearn.metrics import f1_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
f1_score(y_true, y_pred, average=None)
胜利:
array([ 0.8, 0. , 0. ])
每个班的分数是多少.
这篇关于每类F1分数,可进行多类别分类的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!