本文介绍了在O(log n)时间中找到给定范围内的元素数的数据结构是什么?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在解决一个问题,但我意识到我需要一个具有以下属性的数据结构,但即使经过数小时的谷歌搜索也无法找到一个。我相信STL库太丰富了,所以没有这个,因此在这里询问。

I'm solving a problem and I realized I am need of a data structure with following properties but cant find one even after few hours of googling. I believe STL library is too rich to not have this one hence asking here.


  1. 插入任何元素(应该可以包含重复的元素)在 O(log(n))时间

  2. 删除 O(log(n))中的元素时间也是如此。

  3. 如果我想查询[a,b]范围内的元素数量,我
    应该将其计入 O(log(n))时间。

  1. Insert any element(should be able to contain repetetive ones) in O(log(n)) time
  2. Remove an element in O(log(n)) time as well.
  3. If i want to query for the number of elemenes in range [a,b], Ishould get that count in O(log(n)) time..

如果我要从零开始编写,对于第1部分和第2部分,我将使用 set multiset ,然后修改其 find()方法(在 O(log(N))时间运行)返回索引而不是迭代器,以便我可以做
abs(find(a)-find(b)),这样我就可以得到log(N)时间的元素计数。但是对我来说不幸的是, find()返回并进行迭代。

If I were to write it from scratch, for part 1 and 2, I would use a set or multiset and I would modify their find() method(which runs in O(log(N)) time) to return indices instead of iterators so that I can doabs(find(a)-find(b)) so I get the count of elements in log(N) time. But unfortunately for me, find() returns and iterator.

我研究了 multiset(),而我无法在 O(log(n))时间内完成要求3。花费 O(n)

I have looked into multiset() and I could not accomplish requirement 3 in O(log(n)) time. It takes O(n).

有什么提示容易完成吗?

Any hints to get it done easily?

推荐答案

作为STL的一部分,您可以使用 gcc扩展;特别是,您可以如下所述初始化。该代码使用 gcc 进行编译,而没有任何外部库:

Though not part of STL, you may use Policy-Based Data Structures which are part of gcc extensions; In particular you may initialize an order statistics tree as below. The code compiles with gcc without any external libraries:

#include<iostream>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;
using namespace std;

int main()
{
    tree<int,         /* key                */
         null_type,   /* mapped             */
         less<int>,   /* compare function   */
         rb_tree_tag, /* red-black tree tag */
         tree_order_statistics_node_update> tr;

    for(int i = 0; i < 20; ++i)
        tr.insert(i);

    /* number of elements in the range [3, 10) */
    cout << tr.order_of_key(10) - tr.order_of_key(3);
}

这篇关于在O(log n)时间中找到给定范围内的元素数的数据结构是什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-13 17:30