问题描述
这是一道作业题,二分查找已经介绍过了:
This is a homework question, binary search has already been introduced:
给定两个数组,分别是N和M个元素,按升序排列,不一定唯一:
在两个数组的联合中找到 k 个最小元素的时间效率算法是什么?
他们说它需要 O(logN + logM)
其中 N
和 M
是数组长度.
They say it takes O(logN + logM)
where N
and M
are the arrays lengths.
让我们将数组命名为 a
和 b
.显然我们可以忽略所有 a[i]
和 b[i]
其中 i >k.
首先让我们比较 a[k/2]
和 b[k/2]
.让 b[k/2]
>a[k/2]
.因此,我们也可以丢弃所有 b[i]
,其中 i >k/2.
Let's name the arrays a
and b
. Obviously we can ignore all a[i]
and b[i]
where i > k.
First let's compare a[k/2]
and b[k/2]
. Let b[k/2]
> a[k/2]
. Therefore we can discard also all b[i]
, where i > k/2.
现在我们有了所有的 a[i]
,其中 i b[i],其中 i
Now we have all a[i]
, where i < k and all b[i]
, where i < k/2 to find the answer.
下一步是什么?
推荐答案
你已经明白了,继续!并小心索引...
You've got it, just keep going! And be careful with the indexes...
为了简化一点,我假设 N 和 M > k,所以这里的复杂度是 O(log k),也就是 O(log N + log M).
To simplify a bit I'll assume that N and M are > k, so the complexity here is O(log k), which is O(log N + log M).
伪代码:
i = k/2
j = k - i
step = k/4
while step > 0
if a[i-1] > b[j-1]
i -= step
j += step
else
i += step
j -= step
step /= 2
if a[i-1] > b[j-1]
return a[i-1]
else
return b[j-1]
为了演示,你可以使用循环不变式 i + j = k,但我不会做你所有的作业:)
For the demonstration you can use the loop invariant i + j = k, but I won't do all your homework :)
这篇关于如何在两个已排序数组的并集中找到第 k 个最小元素?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!