问题描述
我正在尝试解决以下四个方程组.我曾尝试使用rootSolve"包,但似乎无法通过这种方式找到解决方案.
I am trying to solve the following system of four equations. I have tried using the "rootSolve" package but it does not seem like I can find a solution this way.
我使用的代码如下:
model <- function(x) {
F1 <- sqrt(x[1]^2 + x[3]^2) -1
F2 <- sqrt(x[2]^2 + x[4]^2) -1
F3 <- x[1]*x[2] + x[3]*x[4]
F4 <- -0.58*x[2] - 0.19*x[3]
c(F1 = F1, F2 = F2, F3 = F3, F4 = F4)
}
(ss <- multiroot(f = model, start = c(0,0,0,0)))
但它给了我以下错误:
Warning messages:
1: In stode(y, times, func, parms = parms, ...) :
error during factorisation of matrix (dgefa); singular matrix
2: In stode(y, times, func, parms = parms, ...) : steady-state not reached
正如另一个类似答案中所建议的那样,我已经更改了起始值,对于某些人,我可以找到解决方案.然而,这个系统——根据我使用的来源——应该有一个唯一标识的解决方案.关于如何解决这个系统的任何想法?
I have changed the starting values, as suggested in another similar answer, and for some I can find a solution.However, this system - according to the source I am using - should have an uniquely identified solution.Any idea about how to solve this system?
谢谢!
推荐答案
您的方程组有多个解.我使用不同的包来解决你的系统:nleqslv
如下:
Your system of equations has multiple solutions.I use a different package to solve your system: nleqslv
as follows:
library(nleqslv)
model <- function(x) {
F1 <- sqrt(x[1]^2 + x[3]^2) - 1
F2 <- sqrt(x[2]^2 + x[4]^2) - 1
F3 <- x[1]*x[2] + x[3]*x[4]
F4 <- -0.58*x[2] - 0.19*x[3]
c(F1 = F1, F2 = F2, F3 = F3, F4 = F4)
}
#find solution
xstart <- c(1.5, 0, 0.5, 0)
nleqslv(xstart,model)
这得到了与 Prem 的答案相同的解决方案.
This gets the same solution as the answer of Prem.
然而,您的系统有多种解决方案.包 nleqslv
提供了一个函数来搜索给定不同起始值矩阵的解决方案.你可以用这个
Your system however has multiple solutions.Package nleqslv
provides a function to search for solutions given a matrix of different starting values. You can use this
set.seed(13)
xstart <- matrix(runif(400,0,2),ncol=4)
searchZeros(xstart,model)
(注意:不同的种子可能无法找到所有四种解)
(Note: different seeds may not find all four solutions)
您会看到有四种不同的解决方案:
You will see that there are four different solutions:
$x
[,1] [,2] [,3] [,4]
[1,] -1 -1.869055e-10 5.705536e-10 -1
[2,] -1 4.992198e-13 -1.523934e-12 1
[3,] 1 -1.691309e-10 5.162942e-10 -1
[4,] 1 1.791944e-09 -5.470144e-09 1
.......
这清楚地表明精确解如以下矩阵中给出的
This clearly suggests that the exact solutions are as given in the following matrix
xsol <- matrix(c(1,0,0,1,
1,0,0,-1,
-1,0,0,1,
-1,0,0,-1),byrow=TRUE,ncol=4)
然后做
model(xsol[1,])
model(xsol[2,])
model(xsol[3,])
model(xsol[4,])
确认!我没有尝试通过分析找到这些解决方案,但您可以看到如果 x[2]
和 x[3]
为零,则 F3
和F4
为零.然后可以立即找到 x[1]
和 x[4]
的解.
Confirmed!I have not tried to find these solutions analytically but you can see that if x[2]
and x[3]
are zero then F3
and F4
are zero. The solutions for x[1]
and x[4]
can then be immediately found.
这篇关于求解非线性方程组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!