问题描述
这是我上一篇文章的后续问题: Python/Scipy插值(map_coordinates)
This is a follow-up question to my previous post: Python/Scipy Interpolation (map_coordinates)
假设我要在2d矩形区域内插值.我的变量"z"包含如下所示的数据.每列都是一个恒定值,但是,数组的每一行都可能具有不同的值,如下面的注释所示.
Let's say I want to interpolate over a 2d rectangular area. My variable 'z' contains the data as shown below. Each column is at a constant value, however, each row of the array may be at a different value as shown in the comment below.
from scipy import interpolate
from numpy import array
import numpy as np
# # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309], # 0.0000, 0.0000, 0.0000, 0.0000
[-2.2818,-2.2818,-0.9309,-0.9309], # 0.2620, 0.2784, 0.3379, 0.3526
[-1.4891,-1.4891,-0.5531,-0.5531], # 0.6121, 0.6351, 0.7118, 0.7309
[-1.4891,-1.4891,-0.5531,-0.5531]]) # 1.0000, 1.0000, 1.0000, 1.0000
# Rows, Columns = z.shape
cols = array([0.0000, 0.1750, 0.8170, 1.0000])
rows = array([0.0000, 0.2620, 0.6121, 1.0000])
sp = interpolate.RectBivariateSpline(rows, cols, z, kx=1, ky=1, s=0)
xi = np.array([0.00000, 0.26200, 0.27840, 0.33790, 0.35260, 0.61210, 0.63510,
0.71180, 0.73090, 1.00000], dtype=np.float)
yi = np.array([0.000, 0.167, 0.815, 1.000], dtype=np.float)
print sp(xi, yi)
另一种可视化方法,我知道的值数组为:
As another way of visualizing this, the array of values I KNOW would be:
rows = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526,
0.6121, 0.6351, 0.7118, 0.7309, 1.0000])
# # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309], # 0.0000
[-2.2818, ?, ?, ?], # 0.2620,
[ ?,-2.2818, ?, ?], # 0.2784
[ ?, ?,-0.9309, ?], # 0.3379
[ ? ,?, ?,-0.9309], # 0.3526
[-1.4891, ?, ?, ?], # 0.6121
[ ?,-1.4891, ?, ?], # 0.6351
[ ?, ?,-0.5531, ?], # 0.7118
[ ?, ?, ?,-0.5531], # 0.7309
[-1.4891,-1.4891,-0.5531,-0.5531]]) # 1.0000
我不知道'?'值,并且应该对其进行插值.我尝试将它们替换为无",但是所有结果都得到"nan".
I do not know the '?' values, and they should be interpolated. I tried replacing them with None, but then get 'nan' for all of my results.
我认为我需要使用'griddata'或'interp2'. griddata似乎产生了我期望的结果,但是'interp2'却没有.
I think I need to use either 'griddata' or 'interp2'. griddata seems to produce the result I expect, but 'interp2' does not.
from scipy import interpolate
from numpy import array
import numpy as np
z = array([[-2.2818,-2.2818,-0.9309,-0.9309],
[-2.2818,-2.2818,-0.9309,-0.9309],
[-1.4891,-1.4891,-0.5531,-0.5531],
[-1.4891,-1.4891,-0.5531,-0.5531]])
rows = array([0.0000, 0.0000, 0.0000, 0.0000,
0.2620, 0.2784, 0.3379, 0.3526,
0.6121, 0.6351, 0.7118, 0.7309,
1.0000, 1.0000, 1.0000, 1.0000])
cols = array([0.0000, 0.1750, 0.8180, 1.0000,
0.0000, 0.1750, 0.8180, 1.0000,
0.0000, 0.1750, 0.8180, 1.0000,
0.0000, 0.1750, 0.8180, 1.0000])
xi = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526, 0.6121, 0.6351, 0.7118,
0.7309, 1.0000], dtype=np.float)
yi = array([0.000, 0.175, 0.818, 1.000], dtype=np.float)
GD = interpolate.griddata((rows, cols), z.ravel(),
(xi[None,:], yi[:,None]), method='linear')
I2 = interpolate.interp2d(rows, cols, z, kind='linear')
print GD.reshape(4, 10).T
print '\n'
print I2(xi, yi).reshape(4, 10).T
import matplotlib.pyplot as plt
import numpy.ma as ma
plt.figure()
GD = interpolate.griddata((rows.ravel(), cols.ravel()), z.ravel(),
(xi[None,:], yi[:,None]), method='linear')
CS = plt.contour(xi,yi,GD,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,GD,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)
plt.figure()
I2 = I2(xi, yi)
CS = plt.contour(xi,yi,I2,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,I2,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)
plt.show()
推荐答案
看起来很像.
在您的上层代码示例和上一个(已链接)问题中, 结构化数据.可以使用RectBivariateSpline
或interp2d
进行插值.这意味着您拥有可以在网格上描述的数据(网格上的所有点都具有已知值).网格不一定必须具有相同的dx和dy. (如果dx和dy都相等,那么您将拥有一个常规网格)
In your upper code example and in your previous (linked) question you have structured data. Which can be interpolated using RectBivariateSpline
or interp2d
. This means you have data that can be described on a grid (all points on the grid have a known value). The grid doesn't necessarily have to have all the same dx and dy. (if all dx's and dy's were equal, you'd have a Regular Grid)
现在,您当前的问题是如果不是所有要点都知道怎么办.这称为非结构化数据.您所拥有的只是字段中选择的点.您不一定必须构造所有顶点都具有已知值的矩形.对于这种类型的数据,您可以(根据需要)使用griddata
或BivariateSpline
风格.
Now, your current question asks what to do if not all the points are known. This is known as unstructured data. All you have are a selection of points in a field. You can't necessarily construct rectangles where all vertices have known values. For this type of data, you can use (as you have) griddata
, or a flavor of BivariateSpline
.
现在选择哪个?
与结构化RectBivariateSpline
最接近的类比是非结构化 BivariateSpline
类:SmoothBivariateSpline
或LSQBivariateSpline
.如果要使用样条线对数据进行插值,请使用这些样条线.这样可以使您的函数平滑且易于区分,但是您可以获得的曲面可以在Z.max()或Z.min()之外摆动.
The nearest analogy to the structured RectBivariateSpline
is one of the unstructured BivariateSpline
classes: SmoothBivariateSpline
or LSQBivariateSpline
. If you want to use splines to interpolate the data, go with these. this makes your function smooth and differentiable, but you can get a surface that swings outside Z.max() or Z.min().
由于您正在设置ky=1
和kx=1
,并且可以确定我只是确定对结构化数据进行线性插值,所以我个人只是从RectBivariateSpline
样条线切换 interp2d
结构化网格插值方案.我知道文档说它是用于常规网格的,但是__doc__
本身的示例只是结构化的,而不是常规的.
Since you are setting ky=1
and kx=1
and are getting what I am pretty sure is just linear interpolation on the structured data, I'd personally just switch from the RectBivariateSpline
spline scheme to the interp2d
structured grid interpolation scheme. I know the documentation says it is for regular grids, but the example in the __doc__
itself is only structured, not regular.
如果您最终切换时发现方法之间有任何显着差异,我会很好奇.欢迎来到SciPy.
I'd be curious if you found any significant differences between the methods if you do end up switching. Welcome to SciPy.
这篇关于Python/Scipy 2D插值(非均匀数据)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!