本文介绍了Python Pandas-n X m数据框乘以1 X m数据框的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试将Python的10X7熊猫数据帧乘以1X7数据帧.
I am trying to multiply a 10X7 Pandas dataframe by a 1X7 dataframe in Python.
这就是我所拥有的:
df = pd.DataFrame(np.random.rand(10,7),columns=list('ABCDEFG'))
df_1 = pd.DataFrame(np.random.rand(1,7),columns=list('ABCDEFG'))
我尝试过:
df_prod = pd.DataFrame(columns=df)
for i in range(0, df.shape[0]):
df_prod.iloc[i,:] = df[i,:].tolist()*df_1.iloc[0,:].tolist()
但是我收到此错误消息:
But I get this error message:
Traceback (most recent call last):
File "C:\Python27\test.py", line 29, in <module>
df_elem.iloc[i,:] = df_val[i,:].tolist()*df_cf.iloc[0,:].tolist()
File "C:\python27\lib\site-packages\pandas\core\frame.py", line 1678, in __getitem__
return self._getitem_column(key)
File "C:\python27\lib\site-packages\pandas\core\frame.py", line 1685, in _getitem_column
return self._get_item_cache(key)
File "C:\python27\lib\site-packages\pandas\core\generic.py", line 1050, in _get_item_cache
res = cache.get(item)
TypeError: unhashable type
我需要将df
的所有行乘以df_1
.
I need to multiply all rows of df
by df_1
.
我需要:
df.iloc[0,:] * df_1
df.iloc[1,:] * df_1
df.iloc[2,:] * df_1
df.iloc[3,:] * df_1
.
.
.
.
df.iloc[9,:] * df_1
有没有简单的方法可以在Python中实现这种乘法?
Is there a simple way to achieve this multiplication this in Python?
推荐答案
如果要逐行进行乘法,可以尝试以下操作:
If you want to do the multiplication row-wise you could try this:
%timeit df_prod = df.apply(lambda x: x * df_1.ix[0],axis = 1)
100 loops, best of 3: 6.21 ms per loop
但是按列进行乘法会更快:
however it will be much faster to do the multiplication column-wise:
%timeit = df_prod = pd.DataFrame({c:df[c]* df_1[c].ix[0] for c in df.columns})
100 loops, best of 3: 2.4 ms per loop
这篇关于Python Pandas-n X m数据框乘以1 X m数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!