中卷积自编码器中的共享权重

中卷积自编码器中的共享权重

本文介绍了Tensorflow 中卷积自编码器中的共享权重的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

在阅读解卷积时,经常提到在上采样时使用权重的转置,但在我能找到的 Tensorflow 中的少数示例中,情况并非如此.转置是否发生在内部?以下哪个是正确的?

In reading about deconvolution, it is often mentioned to use the transpose of the weights when upsampling, but in the few examples in Tensorflow that I can find, this is not the case. Does the transpose happen internally? Which of the following is correct?

tf.nn.conv2d_transpose(matrix, tf.transpose(W1, [1, 0, 2, 3]), ...)

tf.nn.conv2d_transpose(matrix, W1, ...)

推荐答案

您不需要转置权重.这只是一个命名约定.您可以在此处了解他们为何如此命名.简短的总结是它不执行反卷积,而是执行分数步幅卷积.

You don't need to transpose the weights. It's just a naming convention.You can see why they named it the way they did here. The short summary is that it isn't performing deconvolution and is instead performing a fractionally strided convolution.

同样直接回答你的问题,第二个是正确的.

Also to answer your question directly the second one is correct.

这篇关于Tensorflow 中卷积自编码器中的共享权重的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-13 08:52