本文介绍了 pandas :将行取消堆叠到新列中的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个看起来像这样的 df:
i have a df that looks like this:
a date c
0 ABC 2020-06-01 0.1
1 ABC 2020-05-01 0.2
2 DEF 2020-07-01 0.3
3 DEF 2020-01-01 0.4
4 DEF 2020-02-01 0.5
5 DEF 2020-07-01 0.6
我想取消堆叠";列'a'所以我的新df看起来像这样
i would like to "unstack" column 'a' so my new df looks like this
a date1 c1 date2 c2 date3 c3 date4 c4
0 ABC 2020-06-01 0.1 2020-05-01 0.2 nan nan nan nan
1 DEF 2020-07-01 0.3 2020-01-01 0.4 2020-02-01 0.5 2020-07-01 0.6
我该怎么做?
推荐答案
使用 GroupBy.cumcount
用于 MultiIndex
的辅助计数器并通过 DataFrame.unstack
,然后为了正确的顺序使用 DataFrame.sort_index
和 map
用于展平 MultiIndex
:
Use GroupBy.cumcount
for helper counter for MultiIndex
and reshape by DataFrame.unstack
, then for correct order is used DataFrame.sort_index
with map
for flatten MultiIndex
:
df = (df.set_index(['a',df.groupby('a').cumcount().add(1)])
.unstack()
.sort_index(axis=1, level=[1, 0], ascending=[True, False]))
df.columns = df.columns.map(lambda x: f'{x[0]}{x[1]}')
df = df.reset_index()
print (df)
a date1 c1 date2 c2 date3 c3 date4 c4
0 ABC 2020-06-01 0.1 2020-05-01 0.2 NaN NaN NaN NaN
1 DEF 2020-07-01 0.3 2020-01-01 0.4 2020-02-01 0.5 2020-07-01 0.6
或者如果由于不同的列名称而无法进行排序,一种想法是使用 DataFrame.reindex
:
Or if sorting is not possible because different columns names one idea is use DataFrame.reindex
:
df1 = df.set_index(['a',df.groupby('a').cumcount().add(1)])
mux = pd.MultiIndex.from_product([df1.index.levels[1], ['date','c']])
df = df1.unstack().swaplevel(1,0, axis=1).reindex(mux, axis=1)
df.columns = df.columns.map(lambda x: f'{x[1]}{x[0]}')
df = df.reset_index()
print (df)
a date1 c1 date2 c2 date3 c3 date4 c4
0 ABC 2020-06-01 0.1 2020-05-01 0.2 NaN NaN NaN NaN
1 DEF 2020-07-01 0.3 2020-01-01 0.4 2020-02-01 0.5 2020-07-01 0.6
这篇关于 pandas :将行取消堆叠到新列中的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!