问题描述
- 如果我有一个 rdd,我如何理解数据在 key:value 中格式?有没有办法找到相同的东西——比如type(object) 告诉我一个对象的类型.我试过
打印type(rdd.take(1))
,但它只是说.
- 假设我有一个类似
(x,1),(x,2),(y,1),(y,3)
的数据,我使用groupByKey
并得到(x,(1,2)),(y,(1,3))
.有没有办法定义(1,2)
和(1,3)
作为值,其中 x 和 y 是键?还是键必须是单个值?我注意到如果我使用reduceByKey
和sum
函数来获取数据((x,3),(y,4))
那么它将此数据定义为键值对变得更加容易
- If I have a rdd, how do I understand the data is in key:valueformat? is there a way to find the same - something liketype(object) tells me an object's type. I tried
printtype(rdd.take(1))
, but it just says<type 'list'>
. - Let's say I have a data like
(x,1),(x,2),(y,1),(y,3)
and I usegroupByKey
and got(x,(1,2)),(y,(1,3))
. Is there a way to define(1,2)
and(1,3)
as values where x and y are keys? Or does a key has to be a single value? I noted that if I usereduceByKey
andsum
function to get the data((x,3),(y,4))
then it becomes much easier to define this data as a key-value pair
推荐答案
Python 是一种动态类型语言,PySpark 不使用任何特殊类型的键值对.对象被视为PairRDD
操作的有效数据的唯一要求是它可以按如下方式解包:
Python is a dynamically typed language and PySpark doesn't use any special type for key, value pairs. The only requirement for an object being considered a valid data for PairRDD
operations is that it can be unpacked as follows:
k, v = kv
通常您会使用两个元素 tuple
,因为它的语义(固定大小的不可变对象)和与 Scala Product
类的相似性.但这只是一个约定,没有什么能阻止你做这样的事情:
Typically you would use a two element tuple
due to its semantics (immutable object of fixed size) and similarity to Scala Product
classes. But this is just a convention and nothing stops you from something like this:
key_value.py
class KeyValue(object):
def __init__(self, k, v):
self.k = k
self.v = v
def __iter__(self):
for x in [self.k, self.v]:
yield x
from key_value import KeyValue
rdd = sc.parallelize(
[KeyValue("foo", 1), KeyValue("foo", 2), KeyValue("bar", 0)])
rdd.reduceByKey(add).collect()
## [('bar', 0), ('foo', 3)]
并使任意类表现得像一个键值.因此,如果某些东西可以正确地解包为一对对象,那么它就是一个有效的键值.实现 __len__
和 __getitem__
魔术方法应该也能工作.处理这个问题最优雅的方法可能是使用 namedtuples
.
and make an arbitrary class behave like a key-value. So once again if something can be correctly unpacked as a pair of objects then it is a valid key-value. Implementing __len__
and __getitem__
magic methods should work as well. Probably the most elegant way to handle this is to use namedtuples
.
还有 type(rdd.take(1))
返回长度为 n
的 list
所以它的类型将始终相同.
Also type(rdd.take(1))
returns a list
of length n
so its type will be always the same.
这篇关于如何确定对象是否是 PySpark 中的有效键值对的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!