本文介绍了InvalidArgumentError 索引 [i,0] = x 不在 keras 中的 [0, x)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有使用 keras 1.2tensorflow 1.1 的代码.我已经运行它但有错误

I have the code using keras 1.2 and tensorflow 1.1. I have run it but with error

import numpy as np
import keras
from keras import backend as K
from keras import initializers
from keras.models import Sequential, Model, load_model, save_model
from keras.layers.core import Dense, Lambda, Activation
from keras.layers import Embedding, Input, Dense, Multiply, Reshape, Flatten
from keras.optimizers import Adagrad, Adam, SGD, RMSprop
from keras.regularizers import l2

from sklearn.metrics import average_precision_score
from sklearn.metrics import  auc

def init_normal(shape, name=None):

    return initializers.lecun_uniform(seed=None)

def get_model(num_a, num_b, num_c, dim, regs=[0,0,0]):

    a = Input(shape=(1,), dtype='int32', name = 'a')
    b = Input(shape=(1,), dtype='int32', name = 'b')
    c = Input(shape=(1,), dtype='int32', name = 'c')



    Embedding_a = Embedding(input_dim = num_a, output_dim = dim,
                              embeddings_initializer='uniform', W_regularizer = l2(regs[0]), input_length=1)
    Embedding_b = Embedding(input_dim = num_b, output_dim = dim,
                              embeddings_initializer='uniform', W_regularizer = l2(regs[1]), input_length=1)
    Embedding_c = Embedding(input_dim = num_c, output_dim = dim,
                              embeddings_initializer='uniform', W_regularizer = l2(regs[2]), input_length=1)


    a_latent = Flatten()(Embedding_a(a))
    b_latent = Flatten()(Embedding_b(b))
    c_latent = Flatten()(Embedding_c(c))


    predict_vector = Multiply()([a_latent, b_latent, b_latent])
    prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(predict_vector)



    model = Model(input=[a, b, c], output=prediction)

    return model

def evaluate_model(model, test_pos, test_neg):

    global _model
    global _test_pos
    global _test_neg
    _model = model
    _test_pos = test_pos
    _test_neg = test_neg
    print(_test_neg)


    a, b, c, labels = [],[],[],[]
    for item in _test_pos:

        a.append(item[0])
        b.append(item[1])
        c.append(item[2])
        labels.append(1)

    for item in _test_neg:

        a.append(item[0])
        b.append(item[1])
        c.append(item[2])
        labels.append(0)

    a = np.array(a)
    b = np.array(b)
    c = np.array(c)


    predictions = _model.predict([a, b, c],
                             batch_size=100, verbose=0)
    return average_precision_score(labels, predictions), auc(labels, predictions)

model = get_model(4, 8, 12, 2, [0,0,0])
model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy')


pos_test = [[0, 0, 2], [4, 8, 8], [2, 5, 4], [0, 0, 0]]
neg_test = [[3, 3, 2], [2, 1, 8], [1, 4, 1], [3, 3, 12]]


aupr, auc = evaluate_model(model, pos_test, neg_test)
print(aupr, auc)

但是,它给了我错误:有什么方法可以解决吗?

However, It give me error:any way to fix it?

InvalidArgumentError (see above for traceback): indices[1,0] = 4 is not in [0, 4)
     [[Node: embedding_4/embedding_lookup = Gather[Tindices=DT_INT32, Tparams=DT_FLOAT, _class=["loc:@embedding_4/embeddings"], validate_indices=true, _device="/job:localhost/replica:0/task:0/cpu:0"](embedding_4/embeddings/read, _recv_a_1_0)]]

推荐答案

问题是,您将嵌入 input_dim 定义为 4、8 和 12,而它应该是 5、9、13.因为input_dim in embedding 应该是 max_index + 1.Keras docs 中也明确提到了这一点:

The problem is, you defined embedding input_dim as 4, 8 and 12 while it should be is 5, 9, 13. Because input_dim in embedding should be max_index + 1. It is also clearly mentioned in Keras docs:

词汇表的大小,即最大整数索引 + 1.

如何解决问题?

get_model 方法更改为:

model = get_model(5, 9, 13, 2, [0, 0, 0])

或者将数据索引更改为:

Or alternatively change index of data to:

pos_test = [[0, 0, 2], [3, 7, 7], [2, 5, 4], [0, 0, 0]]
neg_test = [[3, 3, 2], [2, 1, 7], [1, 4, 1], [3, 3, 11]]

这篇关于InvalidArgumentError 索引 [i,0] = x 不在 keras 中的 [0, x)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-14 12:29