本文介绍了在MATLAB中对矩阵进行归一化的快速技术的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想在Matlab中规范化矩阵的每一列.我尝试了两种实现方式:
I want to normalise each column of a matrix in Matlab. I have tried two implementations:
选项A:
mx=max(x);
mn=min(x);
mmd=mx-mn;
for i=1:size(x,1)
xn(i,:)=((x(i,:)-mn+(mmd==0))./(mmd+(mmd==0)*2))*2-1;
end
选项B:
mn=mean(x);
sdx=std(x);
for i=1:size(x,1)
xn(i,:)=(x(i,:)-mn)./(sdx+(sdx==0));
end
但是,这些选项占用我的数据太多时间,例如在5000x53矩阵上需要3-4秒.因此,有没有更好的解决方案?
However, these options take too much time for my data, e.g. 3-4 seconds on a 5000x53 matrix. Thus, is there any better solution?
推荐答案
在MATLAB中,请记住向量化=速度.
Remember, in MATLAB, vectorizing = speed.
如果A
是M x N矩阵,
If A
is an M x N matrix,
A = rand(m,n);
minA = repmat(min(A), [size(A, 1), 1]);
normA = max(A) - min(A); % this is a vector
normA = repmat(normA, [length(normA) 1]); % this makes it a matrix
% of the same size as A
normalizedA = (A - minA)./normA; % your normalized matrix
这篇关于在MATLAB中对矩阵进行归一化的快速技术的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!