问题描述
如果我有一个 csv 文件太大而无法使用 Pandas(在本例中为 35gb)加载到内存中,我知道可以使用 chunksize 分块处理文件.
If I have a csv file that's too large to load into memory with pandas (in this case 35gb), I know it's possible to process the file in chunks, with chunksize.
但是我想知道是否可以根据列中的值更改块大小.
However I want to know if it's possible to change chunksize based on values in a column.
我有一个 ID 列,然后每个 ID 有几行包含信息,如下所示:
I have an ID column, and then several rows for each ID with information, like this:
ID, Time, x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
ect...
我不想将 ID 分成不同的块.例如,将处理大小为 4 的块:
I don't want to separate IDs into different chunks. for example chunks of size 4 would be processed:
ID, Time, x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3 <--this extra line is included in the 4 chunk
ID, Time, x, y
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
...
有可能吗?
如果不是,可能使用带有 for 循环的 csv 库:
If not perhaps using the csv library with a for loop along the lines of:
for line in file:
x += 1
if x > 1000000 and curid != line[0]:
break
curid = line[0]
#code to append line to a dataframe
虽然我知道这只会创建一个块,而且 for 循环需要很长时间来处理.
although I know this would only create one chunk, and for loops take a long time to process.
推荐答案
如果您逐行遍历 csv 文件,您可以使用依赖于任何列的生成器yield
块.
If you iterate through the csv file line by line, you can yield
chunks with a generator dependent on any column.
工作示例:
import pandas as pd
def iter_chunk_by_id(file):
csv_reader = pd.read_csv(file, iterator=True, chunksize=1, header=None)
first_chunk = csv_reader.get_chunk()
id = first_chunk.iloc[0,0]
chunk = pd.DataFrame(first_chunk)
for l in csv_reader:
if id == l.iloc[0,0]:
id = l.iloc[0,0]
chunk = chunk.append(l)
continue
id = l.iloc[0,0]
yield chunk
chunk = pd.DataFrame(l)
yield chunk
## data.csv ##
# 1, foo, bla
# 1, off, aff
# 2, roo, laa
# 3, asd, fds
# 3, qwe, tre
# 3, tre, yxc
chunk_iter = iter_chunk_by_id("data.csv")
for chunk in chunk_iter:
print(chunk)
print("_____")
输出:
0 1 2
0 1 foo bla
1 1 off aff
_____
0 1 2
2 2 roo laa
3 2 jkl xds
_____
0 1 2
4 3 asd fds
5 3 qwe tre
6 3 tre yxc
_____
这篇关于使用由列变量确定的块大小加载 Pandas 数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!