问题描述
按下按钮后,我的界面冻结.我正在使用线程,但不确定为什么仍然挂起.任何帮助将不胜感激.预先感谢
My interface is freezing on pressing the button. I am using threading but I am not sure why is still hanging. Any help will be appreciated. Thanks in advance
class magic:
def __init__(self):
self.mainQueue=queue.Queue()
def addItem(self,q):
self.mainQueue.put(q)
def startConverting(self,funcName):
if(funcName=="test"):
while not self.mainQueue.empty():
t = Thread(target = self.threaded_function)
t.start()
t.join()
def threaded_function(self):
time.sleep(5)
print(self.mainQueue.get())
m=magic()
def helloCallBack():
m.addItem("asd")
m.startConverting("test") //this line of code is freezing
B = tkinter.Button(top, text ="Hello", command = helloCallBack)
B.pack()
top.mainloop()
推荐答案
以下是使用基于tkinter的GUI执行异步任务的方法.我从引用的书中的食谱中改编了它.您应该能够对其进行修改以执行所需的操作.
Here's a recipe for doing an asynchronous task with a tkinter-based GUI. I adapted it from a recipe in the cited book. You should be able to modify it to do what you need.
要保持GUI的响应速度,需要通过执行join()
后台线程之类的操作来干扰其mainloop()
,这会使GUI一直挂起",直到线程完成.这是通过使用通用的 after()
小部件方法,用于定期轮询Queue
.
To keep the GUI responsive requires not interfering with its mainloop()
by doing something like join()
ing a background thread—which makes the GUI "hang" until the thread is finished. This is accomplished by using the universal after()
widget method to poll the Queue
at regular intervals.
# from "Python Coobook 2nd Edition", section 11.9, page 439.
# Modified to work in Python 2 & 3.
from __future__ import print_function
try:
import Tkinter as tk, time, threading, random, Queue as queue
except ModuleNotFoundError: # Python 3
import tkinter as tk, time, threading, random, queue
class GuiPart(object):
def __init__(self, master, queue, end_command):
self.queue = queue
# Set up the GUI
tk.Button(master, text='Done', command=end_command).pack()
# Add more GUI stuff here depending on your specific needs
def processIncoming(self):
""" Handle all messages currently in the queue, if any. """
while self.queue.qsize():
try:
msg = self.queue.get_nowait()
# Check contents of message and do whatever is needed. As a
# simple example, let's print it (in real life, you would
# suitably update the GUI's display in a richer fashion).
print(msg)
except queue.Empty:
# just on general principles, although we don't expect this
# branch to be taken in this case, ignore this exception!
pass
class ThreadedClient(object):
"""
Launch the main part of the GUI and the worker thread. periodic_call()
and end_application() could reside in the GUI part, but putting them
here means that you have all the thread controls in a single place.
"""
def __init__(self, master):
"""
Start the GUI and the asynchronous threads. We are in the main
(original) thread of the application, which will later be used by
the GUI as well. We spawn a new thread for the worker (I/O).
"""
self.master = master
# Create the queue
self.queue = queue.Queue()
# Set up the GUI part
self.gui = GuiPart(master, self.queue, self.end_application)
# Set up the thread to do asynchronous I/O
# More threads can also be created and used, if necessary
self.running = True
self.thread1 = threading.Thread(target=self.worker_thread1)
self.thread1.start()
# Start the periodic call in the GUI to check the queue
self.periodic_call()
def periodic_call(self):
""" Check every 200 ms if there is something new in the queue. """
self.master.after(200, self.periodic_call)
self.gui.processIncoming()
if not self.running:
# This is the brutal stop of the system. You may want to do
# some cleanup before actually shutting it down.
import sys
sys.exit(1)
def worker_thread1(self):
"""
This is where we handle the asynchronous I/O. For example, it may be
a 'select()'. One important thing to remember is that the thread has
to yield control pretty regularly, be it by select or otherwise.
"""
while self.running:
# To simulate asynchronous I/O, create a random number at random
# intervals. Replace the following two lines with the real thing.
time.sleep(rand.random() * 1.5)
msg = rand.random()
self.queue.put(msg)
def end_application(self):
self.running = False # Stops worker_thread1 (invoked by "Done" button).
rand = random.Random()
root = tk.Tk()
client = ThreadedClient(root)
root.mainloop()
这篇关于冻结/挂起tkinter Gui,等待线程完成的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!