问题描述
我有以下numpy数组:
I have the following numpy arrays:
arr_1 = [[1,2],[3,4],[5,6]] # 3 X 2
arr_2 = [[0.5,0.6],[0.7,0.8],[0.9,1.0],[1.1,1.2],[1.3,1.4]] # 5 X 2
arr_1
显然是3 X 2
数组,而arr_2
是5 X 2
数组.
arr_1
is clearly a 3 X 2
array, whereas arr_2
is a 5 X 2
array.
现在不进行循环了,我想逐个元素地将arr_1和arr_2相乘,以便将滑动窗口技术(窗口大小3)应用于arr_2.
Now without looping, I want to element-wise multiply arr_1 and arr_2 so that I apply a sliding window technique (window size 3) to arr_2.
Example:
Multiplication 1: np.multiply(arr_1,arr_2[:3,:])
Multiplication 2: np.multiply(arr_1,arr_2[1:4,:])
Multiplication 3: np.multiply(arr_1,arr_2[2:5,:])
我想以某种矩阵乘法形式执行此操作,以使其比当前形式的当前解决方案更快:
I want to do this in some sort of a matrix multiplication form to make it faster than my current solution which is of the form:
for i in (2):
np.multiply(arr_1,arr_2[i:i+3,:])
因此,如果arr_2中的行数很大(数以万计),则此解决方案的伸缩性不是很好.
So if the number of rows in arr_2 are large (of the order of tens of thousands), this solution doesn't really scale very well.
任何帮助将不胜感激.
推荐答案
我们可以使用 NumPy broadcasting
以矢量化方式创建那些滑动窗口索引.然后,我们可以简单地用它们索引到arr_2
中,以创建一个3D
数组,并与2D
数组arr_1
进行逐元素乘法,这又将再次打开broadcasting
.
We can use NumPy broadcasting
to create those sliding windowed indices in a vectorized manner. Then, we can simply index into arr_2
with those to create a 3D
array and perform element-wise multiplication with 2D
array arr_1
, which in turn will bring on broadcasting
again.
所以,我们将有一个像这样的矢量化实现-
So, we would have a vectorized implementation like so -
W = arr_1.shape[0] # Window size
idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
out = arr_1*arr_2[idx]
运行时测试并验证结果-
Runtime test and verify results -
In [143]: # Input arrays
...: arr_1 = np.random.rand(3,2)
...: arr_2 = np.random.rand(10000,2)
...:
...: def org_app(arr_1,arr_2):
...: W = arr_1.shape[0] # Window size
...: L = arr_2.shape[0]-W+1
...: out = np.empty((L,W,arr_1.shape[1]))
...: for i in range(L):
...: out[i] = np.multiply(arr_1,arr_2[i:i+W,:])
...: return out
...:
...: def vectorized_app(arr_1,arr_2):
...: W = arr_1.shape[0] # Window size
...: idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
...: return arr_1*arr_2[idx]
...:
In [144]: np.allclose(org_app(arr_1,arr_2),vectorized_app(arr_1,arr_2))
Out[144]: True
In [145]: %timeit org_app(arr_1,arr_2)
10 loops, best of 3: 47.3 ms per loop
In [146]: %timeit vectorized_app(arr_1,arr_2)
1000 loops, best of 3: 1.21 ms per loop
这篇关于滑动窗口操作的Numpy矢量化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!