问题描述
我试图弄清楚如何绘制这些数据:
第1列['genre']:这些是表格中所有类型的值计数
剧情2453喜剧 2319行动1590恐怖915冒险 586惊悚491纪录片 432动画403犯罪 380幻想272科幻小说214浪漫 186家庭 144谜底 125音乐 100电视电影 78战争59历史 44西餐42国外9名称:流派,dtype:int64
第2栏['release_year']:这些是不同类型的所有发行年份的值计数
2014 6992013 6562015 6272012 5842011 5402009 5312008 4952010 4872007 4382006 4082005 3632004 3072003 2812002 2662001 2412000 2261999 2241998 2101996 2031997 1921994 1841993 1781995年1741988 1451989年1361992 1331991 1331990 1321987年1251986 1211985年1091984年1051981 821982年811983 801980 781978 651979 571977 571971 551973 551976年471974 461966 461975 441964 421970 401967 401972年401968 391965年351963年341962 321960 321969 311961年31日名称:release_year,数据类型:int64
我需要回答类似的问题-哪种类型每年最流行?等等
可以使用什么样的图,因为在一个图表中会有很多箱,所以最好的方法是什么?
seaborn 是否更适合绘制此类变量?
我应该将年度数据划分为2个十年(1900年和2000年)吗?
表的样本:id流行度运行时类型投票_计数投票_平均发行_年0 135397 32.985763 124 行动 5562 6.5 20151 76341 28.419936 120行动6185 7.1 19952 262500 13.112507 119冒险2480 6.3 20153 140607 11.173104 136惊悚片5292 7.5 20134 168259 9.335014 137 行动 2947 7.3 2005
你可以这样做:
I am trying to figure out how could I plot this data:
column 1 ['genres']: These are the value counts for all the genres in the table
Drama 2453
Comedy 2319
Action 1590
Horror 915
Adventure 586
Thriller 491
Documentary 432
Animation 403
Crime 380
Fantasy 272
Science Fiction 214
Romance 186
Family 144
Mystery 125
Music 100
TV Movie 78
War 59
History 44
Western 42
Foreign 9
Name: genres, dtype: int64
column 2 ['release_year']: These are the value counts for all the release years for different kind of genres
2014 699
2013 656
2015 627
2012 584
2011 540
2009 531
2008 495
2010 487
2007 438
2006 408
2005 363
2004 307
2003 281
2002 266
2001 241
2000 226
1999 224
1998 210
1996 203
1997 192
1994 184
1993 178
1995 174
1988 145
1989 136
1992 133
1991 133
1990 132
1987 125
1986 121
1985 109
1984 105
1981 82
1982 81
1983 80
1980 78
1978 65
1979 57
1977 57
1971 55
1973 55
1976 47
1974 46
1966 46
1975 44
1964 42
1970 40
1967 40
1972 40
1968 39
1965 35
1963 34
1962 32
1960 32
1969 31
1961 31
Name: release_year, dtype: int64
I need to answer the questions like - What genre is most popular from year to year? and so on
what kind of plots can be used and what is the best way to do this since there would be a lot of bins ins a single chart?
Is seaborn better for plotting such variables?
Should I divide the year data into 2 decades(1900 and 2000)?
Sample of the table:
id popularity runtime genres vote_count vote_average release_year
0 135397 32.985763 124 Action 5562 6.5 2015
1 76341 28.419936 120 Action 6185 7.1 1995
2 262500 13.112507 119 Adventure 2480 6.3 2015
3 140607 11.173104 136 Thriller 5292 7.5 2013
4 168259 9.335014 137 Action 2947 7.3 2005
You could do something like this:
Plotting histogram using seaborn for a dataframe
Personally i prefer seaborn for this kind of plots, because it's easier. But you can use matplotlib too.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
# sample data
samples = 300
ids = range(samples)
gind = np.random.randint(0, 4, samples)
years = np.random.randint(1990, 2000, samples)
# create sample dataframe
gkeys = {1: 'Drama', 2: 'Comedy', 3: 'Action', 4: 'Adventure', 0: 'Thriller'}
df = pd.DataFrame(zip(ids, gind, years),
columns=['ID', 'Genre', 'Year'])
df['Genre'] = df['Genre'].replace(gkeys)
# count the year groups
res = df.groupby(['Year', 'Genre']).count()
res = res.reset_index()
# only the max values
# res_ind = res.groupby(['Year']).idxmax()
# res = res.loc[res_ind['ID'].tolist()]
# viz
sns.set(style="white")
g = sns.catplot(x='Year',
y= 'ID',
hue='Genre',
data=res,
kind='bar',
ci=None,
)
g.set_axis_labels("Year", "Count")
plt.show()
If this are to many bins in a plot, just split it up.
这篇关于如何在 pandas/matplotlib/seaborn 中绘制分类和连续数据的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!