本文介绍了将多个csv文件导入pandas并连接成一个DataFrame的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想从一个目录中读取几个 csv 文件到 Pandas 中,并将它们连接成一个大的 DataFrame.我一直无法弄清楚.这是我目前所拥有的:
I would like to read several csv files from a directory into pandas and concatenate them into one big DataFrame. I have not been able to figure it out though. Here is what I have so far:
import glob
import pandas as pd
# get data file names
path =r'C:DRODCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
我想我在 for 循环中需要一些帮助???
I guess I need some help within the for loop???
推荐答案
如果您的所有 csv
文件中的列都相同,那么您可以尝试以下代码.我添加了 header=0
以便在阅读 csv
后可以将第一行指定为列名.
If you have same columns in all your csv
files then you can try the code below.I have added header=0
so that after reading csv
first row can be assigned as the column names.
import pandas as pd
import glob
path = r'C:DRODCL_rawdata_files' # use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
这篇关于将多个csv文件导入pandas并连接成一个DataFrame的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!