问题描述
考虑一个以 date
列作为索引的数据框,以及三列 x
, y
和 z
我想将此数据帧的内容写入.csv文件。我知道我可以使用 df.to_csv
为此,但是,我想添加一个第二个标题行与单位。在此示例中,所需的.csv文件将如下所示:
Consider a data frame with a date
column as an index and three columns x
, y
and z
with some observations. I want to write the contents of this data frame to a .csv file. I know I can use df.to_csv
for this, however, I would like to add a second header line with the units. In this example, the desired .csv file would look something like this:
date,x,y,z
(yyyy-mm-dd),(s),(m),(kg)
2014-03-12,1,2,3
2014-03-13,4,5,6
...
推荐答案
在你的例子中的确切输出,但它接近。您可以使用多索引列将第二个标题(单位)与列标签一起存储:
This doesn't produce the exact output in your example, but it's close. You can use multi-index columns to store the second header (the units) with the column labels:
>>> import pandas as pd
>>> columns = pd.MultiIndex.from_tuples(
... zip(['date', 'x', 'y', 'z'],
... ['(yyyy-mm-dd)', '(s)', '(m)', '(kg)']))
>>> data = [['2014-03-12', 1, 2, 3],
... ['2014-03-13', 4, 5, 6]]
>>> df = pd.DataFrame(data, columns=columns)
>>> df
date x y z
(yyyy-mm-dd) (s) (m) (kg)
0 2014-03-12 1 2 3
1 2014-03-13 4 5 6
以这种方式存储第二个标题允许您的列保持正确的类型 x
应为整数类型):
Storing the second header this way allows your columns to keep the correct type (e.g., column x
should be an integer type):
>>> df.dtypes
date (yyyy-mm-dd) object
x (s) int64
y (m) int64
z (kg) int64
dtype: object
如果您已将第二个标题作为行存储在 DataFrame
,你的列 dtypes
会变成 object
,你可能不想
If you had stored the second header as a row in the DataFrame
, your column dtypes
would become object
, which you probably don't want.
以CSV格式书写 DataFrame
会产生与您的示例非常相似的内容:
Writing the DataFrame
in CSV format produces something very similar to your example:
>>> df.to_csv('out.csv', index=False)
>>> !cat out.csv
date,x,y,z
(yyyy-mm-dd),(s),(m),(kg)
,,,
2014-03-12,1,2,3
2014-03-13,4,5,6
唯一的区别是额外的逗号行,这就是pandas如何将多行标题从实际的数据行中分离出来。这允许将CSV文件读回到等效的 DataFrame
:
The only difference is the extra line of commas, which is how pandas separates multi-row headers from the actual rows of data. This allows the CSV file to be read back into an equivalent DataFrame
:
>>> df2 = pd.read_csv('out.csv', header=[0, 1])
>>> df2
date x y z
(yyyy-mm-dd) (s) (m) (kg)
0 2014-03-12 1 2 3
1 2014-03-13 4 5 6
注意:我发现很多这些信息散布在。
Note: I found a lot of this information scattered throughout this SO question.
这篇关于如何使用pandas to_csv()编写一个带多个标题行的csv文件?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!