问题描述
我想在不进行聚合的情况下对 Pandas 数据框进行透视,而不是垂直呈现透视索引列,我想水平呈现它.我尝试使用 pd.pivot_table
但我没有得到我想要的.
I want to pivot a pandas dataframe without aggregation, and instead of presenting the pivot index column vertically I want to present it horizontally. I tried with pd.pivot_table
but I'm not getting exactly what I wanted.
data = {'year': [2011, 2011, 2012, 2013, 2013],
'A': [10, 21, 20, 10, 39],
'B': [12, 45, 19, 10, 39]}
df = pd.DataFrame(data)
print df
A B year
0 10 12 2011
1 21 45 2011
2 20 19 2012
3 10 10 2013
4 39 39 2013
但我想要:
year 2011 2012 2013
cols A B A B A B
0 10 12 20 19 10 10
1 21 45 NaN NaN 39 39
推荐答案
您可以先通过 cumcount
,然后是 stack
和 unstack
:
You can first create column for new index by cumcount
, then stack
with unstack
:
df['g'] = df.groupby('year')['year'].cumcount()
df1 = df.set_index(['g','year']).stack().unstack([1,2])
print (df1)
year 2011 2012 2013
A B A B A B
g
0 10.0 12.0 20.0 19.0 10.0 10.0
1 21.0 45.0 NaN NaN 39.0 39.0
如果需要设置列名使用 rename_axis
(pandas
0.18.0
中的新增内容):
If need set columns names use rename_axis
(new in pandas
0.18.0
):
df['g'] = df.groupby('year')['year'].cumcount()
df1 = df.set_index(['g','year'])
.stack()
.unstack([1,2])
.rename_axis(None)
.rename_axis(('year','cols'), axis=1)
print (df1)
year 2011 2012 2013
cols A B A B A B
0 10.0 12.0 20.0 19.0 10.0 10.0
1 21.0 45.0 NaN NaN 39.0 39.0
pivot
,但您需要通过 然后按 sort_index
:
Another solution with pivot
, but you need swap first and second level of Multiindex
in columns by swaplevel
and then sort it by sort_index
:
df['g'] = df.groupby('year')['year'].cumcount()
df1 = df.pivot(index='g', columns='year')
df1 = df1.swaplevel(0,1, axis=1).sort_index(axis=1)
print (df1)
year 2011 2012 2013
A B A B A B
g
0 10.0 12.0 20.0 19.0 10.0 10.0
1 21.0 45.0 NaN NaN 39.0 39.0
print (df1)
year 2011 2012 2013
A B A B A B
g
0 10.0 12.0 20.0 19.0 10.0 10.0
1 21.0 45.0 NaN NaN 39.0 39.0
这篇关于Pandas 数据透视表排列无聚合的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!