本文介绍了用周围环境值的平均值替换缺失值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我的数据集如下所示(我们称之为a"):
My dataset looks like the following (let's call it "a"):
date value
2013-01-01 12.2
2013-01-02 NA
2013-01-03 NA
2013-01-04 16.8
2013-01-05 10.1
2013-01-06 NA
2013-01-07 12.0
我想用最近的环境值(系列中的前一个和下一个值)的平均值替换 NA
.
I would like to replace the NA
by the mean of the closest surroundings values (the previous and the next values in the series).
我尝试了以下操作,但我不相信输出...
I tried the following but I am not convinced by the output...
miss.val = which(is.na(a$value))
library(zoo)
z = zoo(a$value, a$date)
z.corr = na.approx(z)
z.corr[(miss.val - 1):(miss.val + 1), ]
推荐答案
Using na.locf
(Last Observation Carried Forward) from package zoo
:
Using na.locf
(Last Observation Carried Forward) from package zoo
:
R> library("zoo")
R> x <- c(12.2, NA, NA, 16.8, 10.1, NA, 12.0)
R> (na.locf(x) + rev(na.locf(rev(x))))/2
[1] 12.20 14.50 14.50 16.80 10.10 11.05 12.00
(如果 x
的第一个或最后一个元素是 NA
,则不起作用)
(does not work if first or last element of x
is NA
)
这篇关于用周围环境值的平均值替换缺失值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!