将数据框转换为具有多个值的字典

将数据框转换为具有多个值的字典

本文介绍了将数据框转换为具有多个值的字典的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个像这样的数据框

  Sr.No ID ABCD 
1 Tom Earth English BMW
2汤姆·马斯(Tom Mars)西班牙宝马绿色
3迈克尔·水星印地语奥迪黄色
4约翰·维纳斯葡萄牙梅赛德斯蓝色
5约翰·德国奥迪红色

我正在尝试通过ID将其转换为字典,例如:

  {'ID':'Tom','A':['Earth','Mars'],'B':['English','Spanish'],'C':
['BMW' ,'BMW'],'D':['Green']}},

{'ID':'Michael','A':['Mercury'],'B':['印地语'],'C':['Audi'],
'D':['Yellow']},

{'ID':'John','A': ['Venus'],'B':['Portugese','German'],'C':
['Mercedes','Audi'],'D':['Blue','R ed']}

有点类似于我想要的。



我也尝试过,

  df.set_index('ID' ).to_dict()

但这给了我长度为5而不是3的字典。赞赏。

解决方案

'ID'分组并应用 to_dict 到每个带有 orient ='list'的组非常接近:

  df.groupby('ID')。apply(lambda dfg:dfg.to_dict(orient ='list'))。to_dict()
Out [25]:
{'John':{'A':['Venus',nan],
'B':['Portugese','German'],
'C':['Mercedes', 'Audi'],
'D':['Blue','Red'],
'ID':['John','John'],
'Sr.No' :[4,5]},
'Michael':{'A':['Mercury'],
'B':['Hindi'],
'C':[ 'Audi'],
'D':['Yellow'],
'ID':['Michael'],
'Sr.No':[3]},
'Tom':{'A':['Earth','Mars'],
'B':['English','Spanish'],
'C':['BMW ','BMW'],
'D':[nan,'Green'],
'ID':['Tom','Tom'],
'Sr.No' :[1,2]}}

应该只是对结果进行略微格式化。 / p>

编辑::从字典中删除'ID' es:

  df.groupby('ID')。apply(lambda dfg:dfg.drop('ID',axis = 1).to_dict(orient ='list'))。to_dict()
Out [5]:
{'John':{'A':['Venus',nan],
'B':['葡萄牙语','德语'],
'C':['Mercedes','Audi'],
'D':['Blue','Red'] ,
'Sr.No':[4,5]},
'Michael':{'A':['Mercury'],
'B':['Hindi'] ,
'C':['Audi'],
'D':['Yellow'],
'Sr.No':[3]},
'Tom ':{'A':['Earth','Mars'],
'B':['English','Spanish'],
'C':['BMW','BMW '],
'D':[nan,'Green'],
'Sr.No':[1、2]}}


I have a dataframe like

Sr.No   ID       A         B          C         D
 1     Tom     Earth    English      BMW
 2     Tom     Mars     Spanish      BMW       Green
 3     Michael Mercury  Hindi        Audi      Yellow
 4     John    Venus    Portugese    Mercedes  Blue
 5     John             German       Audi      Red

I am trying to convert this to a dictionary by ID like :

{'ID' : 'Tom', 'A' : ['Earth', 'Mars'], 'B' : ['English', 'Spanish'], 'C' :
                                                ['BMW', 'BMW'], 'D':['Green'] },

{'ID' : 'Michael', 'A' : ['Mercury'], 'B' : ['Hindi'], 'C' : ['Audi'],
                                                               'D':['Yellow']},

{'ID' : 'John', 'A' : ['Venus'], 'B' : ['Portugese', 'German'], 'C' :
                                     ['Mercedes', 'Audi'], 'D':['Blue', 'Red'] }

This is somewhat similar to what I want.

I also tried ,

df.set_index('ID').to_dict()

but this gives me dictionary of length 5 instead of 3. Any help would be appreciated.

解决方案

Grouping by 'ID' and apply to_dict to each group with orient='list' comes pretty close:

df.groupby('ID').apply(lambda dfg: dfg.to_dict(orient='list')).to_dict()
Out[25]:
{'John': {'A': ['Venus', nan],
  'B': ['Portugese', 'German'],
  'C': ['Mercedes', 'Audi'],
  'D': ['Blue', 'Red'],
  'ID': ['John', 'John'],
  'Sr.No': [4, 5]},
 'Michael': {'A': ['Mercury'],
  'B': ['Hindi'],
  'C': ['Audi'],
  'D': ['Yellow'],
  'ID': ['Michael'],
  'Sr.No': [3]},
 'Tom': {'A': ['Earth', 'Mars'],
  'B': ['English', 'Spanish'],
  'C': ['BMW', 'BMW'],
  'D': [nan, 'Green'],
  'ID': ['Tom', 'Tom'],
  'Sr.No': [1, 2]}}

It should just be a matter of formatting the result slightly.

Edit: to remove 'ID' from the dictionaries:

df.groupby('ID').apply(lambda dfg: dfg.drop('ID', axis=1).to_dict(orient='list')).to_dict()
Out[5]:
{'John': {'A': ['Venus', nan],
  'B': ['Portugese', 'German'],
  'C': ['Mercedes', 'Audi'],
  'D': ['Blue', 'Red'],
  'Sr.No': [4, 5]},
 'Michael': {'A': ['Mercury'],
  'B': ['Hindi'],
  'C': ['Audi'],
  'D': ['Yellow'],
  'Sr.No': [3]},
 'Tom': {'A': ['Earth', 'Mars'],
  'B': ['English', 'Spanish'],
  'C': ['BMW', 'BMW'],
  'D': [nan, 'Green'],
  'Sr.No': [1, 2]}}

这篇关于将数据框转换为具有多个值的字典的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-11 13:52