问题描述
我正在尝试使用 Spark (Scala) 数据帧对模式和相应计数进行 groupby 聚合.
I am trying to use Spark (Scala) dataframes to do groupby aggregates for mode and the corresponding count.
例如,
假设我们有以下数据框:
Suppose we have the following dataframe:
Category Color Number Letter
1 Red 4 A
1 Yellow Null B
3 Green 8 C
2 Blue Null A
1 Green 9 A
3 Green 8 B
3 Yellow Null C
2 Blue 9 B
3 Blue 8 B
1 Blue Null Null
1 Red 7 C
2 Green Null C
1 Yellow 7 Null
3 Red Null B
现在我们要按Category分组,然后是Color,然后求分组的大小,number non-nulls的计数,number的总大小,number的均值,number的众数,以及对应的众数数数.对于字母,我想要非空值的计数以及相应的模式和模式计数(没有意思,因为这是一个字符串).
Now we want to group by Category, then Color, and then find the size of the grouping, count of number non-nulls, the total size of number, the mean of number, the mode of number, and the corresponding mode count. For letter I'd like the count of non-nulls and the corresponding mode and mode count (no mean since this is a string).
所以输出最好是:
Category Color CountNumber(Non-Nulls) Size MeanNumber ModeNumber ModeCountNumber CountLetter(Non-Nulls) ModeLetter ModeCountLetter
1 Red 2 2 5.5 4 (or 7)
1 Yellow 1 2 7 7
1 Green 1 1 9 9
1 Blue 1 1 - -
2 Blue 1 2 9 9 etc
2 Green - 1 - -
3 Green 2 2 8 8
3 Yellow - 1 - -
3 Blue 1 1 8 8
3 Red - 1 - -
这对于计数和平均来说很容易做到,但对于其他所有事情来说都比较棘手.任何建议将不胜感激.
This is easy to do for the count and mean but more tricky for everything else. Any advice would be appreciated.
谢谢.
推荐答案
据我所知 - 没有简单的方法来计算模式 - 您必须计算每个值的出现次数,然后将结果与最大值(每键)的结果.其余的计算相当简单:
As far as I know - there's no simple way to compute mode - you have to count the occurrences of each value and then join the result with the maximum (per key) of that result. The rest of the computations are rather straight-forward:
// count occurrences of each number in its category and color
val numberCounts = df.groupBy("Category", "Color", "Number").count().cache()
// compute modes for Number - joining counts with the maximum count per category and color:
val modeNumbers = numberCounts.as("base").join(numberCounts.groupBy("Category", "Color").agg(max("count") as "_max").as("max"),
$"base.Category" === $"max.Category" and
$"base.Color" === $"max.Color" and
$"base.count" === $"max._max")
.select($"base.Category", $"base.Color", $"base.Number", $"_max")
.groupBy("Category", "Color")
.agg(first($"Number", ignoreNulls = true) as "ModeNumber", first("_max") as "ModeCountNumber")
.where($"ModeNumber".isNotNull)
// now compute Size, Count and Mean (simple) and join to add Mode:
val result = df.groupBy("Category", "Color").agg(
count("Color") as "Size", // counting a key column -> includes nulls
count("Number") as "CountNumber", // does not include nulls
mean("Number") as "MeanNumber"
).join(modeNumbers, Seq("Category", "Color"), "left")
result.show()
// +--------+------+----+-----------+----------+----------+---------------+
// |Category| Color|Size|CountNumber|MeanNumber|ModeNumber|ModeCountNumber|
// +--------+------+----+-----------+----------+----------+---------------+
// | 3|Yellow| 1| 0| null| null| null|
// | 1| Green| 1| 1| 9.0| 9| 1|
// | 1| Red| 2| 2| 5.5| 7| 1|
// | 2| Green| 1| 0| null| null| null|
// | 3| Blue| 1| 1| 8.0| 8| 1|
// | 1|Yellow| 2| 1| 7.0| 7| 1|
// | 2| Blue| 2| 1| 9.0| 9| 1|
// | 3| Green| 2| 2| 8.0| 8| 2|
// | 1| Blue| 1| 0| null| null| null|
// | 3| Red| 1| 0| null| null| null|
// +--------+------+----+-----------+----------+----------+---------------+
你可以想象 - 这可能很慢,因为它有 4 个 groupBy
和两个 join
- 都需要洗牌...
As you can imagine - this might be slow, as it has 4 groupBy
s and two join
s - all requiring shuffles...
至于 Letter
列统计信息 - 恐怕您必须为该列单独重复此操作并添加另一个连接.
As for the Letter
column statistics - I'm afraid you'll have to repeat this for that column separately and add another join.
这篇关于使用 Spark Groupby 聚合查找最常见的值和对应的计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!