问题描述
我一直在使用raster
包中的extract
函数,使用shapefile定义的区域从栅格文件中提取数据.但是,此过程现在需要的内存量存在问题.我确实有很多shapefile(〜1000个).光栅文件很大(〜1.6gb)
I have been using the extract
function from the raster
package to extract data from raster files using an area defined by shapefiles. However, I am having problems with the amount of memory that this process is now requiring. I do have a large number of shapefiles (~1000). The raster files are large (~1.6gb)
我的过程是:
shp <- mclapply(list.files(pattern="*.shp",full.names=TRUE), readShapePoly,mc.cores=6)
ndvi <- raster("NDVI.dat")
mc<- function(y) {
temp <- gUnionCascaded(y)
extract <- extract(ndvi,temp)
mean <- range(extract, na.rm=T )[1:2]
leng <- length(output)
}
output <- lapply(shp, mc)
我可以做些更改以减少内存负载吗?我尝试加载较少的shapefile,该文件在内存再次达到峰值之前可以工作约5分钟.其四核计算机2.4GHz与8GB内存
Are there any changes I can make to reduce the memory load? I tried loading fewer shapefiles which worked for about 5 min before the memory spiked again. Its a quad core computer 2.4ghz with 8gb ram
推荐答案
我会这样做(未经测试):
I would do this (untested):
## Clearly we need these packages, and their dependencies
library(raster)
library(rgeos)
shpfiles <- list.files(pattern="*.shp",full.names=TRUE)
ndvi <- raster("NDVI.dat")
## initialize an object to store the results for each shpfile
res <- vector("list", length(shpfiles))
names(res) <- shpfiles
## loop over files
for (i in seq_along(shpfiles)) {
## do the union
temp <- gUnionCascaded(shpfiles[i])
## extract for this shape data (and don't call it "extract")
extracted <- extract(ndvi,temp)
## further processing, save result
mean <- range(extracted, na.rm = TRUE )[1:2]
res[[i]] <- mean ## plus whatever else you need
}
目前尚不清楚上面mc()的返回值是什么意思,因此我将其忽略.与您最初尝试的相比,这将大大提高内存效率和速度.我怀疑在这里完全可以使用并行的东西.
It's not at all clear what the return value of mc() above is meant to be, so I ignore it. This will be far more memory efficient and fast than what you tried originally. I doubt it's worth using parallel stuff at all here.
这篇关于使用过多的内存从{raster}包中提取的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!