问题描述
我使用了熊猫df.value_counts()来查找特定品牌的出现次数.我想将这些价值计数与初始数据框中的各个品牌合并.
I used pandas df.value_counts() to find the number of occurrences of particular brands. I want to merge those value counts with the respective brands in the initial dataframe.
df has many columns including one named 'brands'
brands = df.brands.value_counts()
brand1 143
brand2 21
brand3 101
etc.
如何将价值计数与原始数据框合并,以使每个品牌的相应计数位于新列中,例如"brand_count"?
How do I merge the value counts with the original dataframe such that each brand's corresponding count is in a new column, say "brand_count"?
是否可以将标题分配给这些列;名称函数不能与series一起使用,我无法将其转换为数据框以可能以这种方式合并数据.但是,value_counts输出一系列dtype int64(品牌名称应为字符串类型),这意味着我无法执行以下操作:
Is it possible to assign headers to these columns; the names function won't work with series and I was unable to convert it to a dataframe to possibly merge the data that way. But, value_counts outputs a Series of dtype int64 (brand names should be type string) which means I cannot do the following:
df2 = pd.DataFrame({'brands': list(brands_all[0]), "brand_count":
list(brands_all[1])})
(merge with df)
最终,我想得到这个:
col1 col2 col3 brands brand_count ... col150
A 30
C 140
A 30
B 111
推荐答案
就是您想要的:
import numpy as np
import pandas as pd
# generating random DataFrame
brands_list = ['brand{}'.format(i) for i in range(10)]
a = pd.DataFrame({'brands': np.random.choice(brands_list, 100)})
b = pd.DataFrame(np.random.randint(0,10,size=(100, 3)), columns=list('ABC'))
df = pd.concat([a, b], axis=1)
print(df.head())
# generate 'brands' DF
brands = pd.DataFrame(df.brands.value_counts().reset_index())
brands.columns = ['brands', 'count']
print(brands)
# merge 'df' & 'brands_count'
merged = pd.merge(df, brands, on='brands')
print(merged)
PS的第一大部分只是数据帧的生成.
PS first big part is just a dataframe generation.
您感兴趣的部分以# generate 'brands'
DF注释
The part which is interesting for you starts with the # generate 'brands'
DF comment
这篇关于如何将pandas value_counts()合并到数据框或使用它来对数据框进行子集化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!