问题描述
有一个熊猫数据框:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 300 entries, 5220 to 5519
Data columns (total 3 columns):
Date 300 non-null datetime64[ns]
A 300 non-null float64
B 300 non-null float64
dtypes: datetime64[ns](1), float64(2)
memory usage: 30.5 KB
我想绘制A和B系列与日期的关系图.
I want to plot A and B series vs Date.
plt.plot_date(data['Date'], data['A'], '-')
plt.plot_date(data['Date'], data['B'], '-')
然后我要在A系列和B系列之间的区域上应用fill_between():
Then I want apply fill_between() on area between A and B series:
plt.fill_between(data['Date'], data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
哪个输出:
TypeError: ufunc 'isfinite' not supported for the input types, and the inputs
could not be safely coerced to any supported types according to the casting
rule ''safe''
matplotlib是否在fill_between()
函数中接受熊猫datetime64对象?我应该将其转换为其他日期类型吗?
Does matplotlib accept pandas datetime64 object in fill_between()
function? Should I convert it to different date type?
推荐答案
Pandas在matplotlib.units.registry
中注册了一个转换器,该转换器将许多日期时间类型(例如pandas DatetimeIndex和dtype datetime64
的numpy数组)转换为matplotlib datenums,但它不处理Pandas dtype datetime64
.
Pandas registers a converter in matplotlib.units.registry
which converts a number of datetime types (such as pandas DatetimeIndex, and numpy arrays of dtype datetime64
) to matplotlib datenums, but it does not handle Pandas Series
with dtype datetime64
.
In [67]: import pandas.tseries.converter as converter
In [68]: c = converter.DatetimeConverter()
In [69]: type(c.convert(df['Date'].values, None, None))
Out[69]: numpy.ndarray # converted (good)
In [70]: type(c.convert(df['Date'], None, None))
Out[70]: pandas.core.series.Series # left unchanged
fill_between
检查并使用转换器来处理数据(如果存在).
fill_between
checks for and uses a converter to handle the data if it exists.
作为一种解决方法,您可以将日期转换为datetime64
的NumPy数组:
So as a workaround, you could convert the dates to a NumPy array of datetime64
's:
d = data['Date'].values
plt.fill_between(d, data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
例如,
For example,
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
N = 300
dates = pd.date_range('2000-1-1', periods=N, freq='D')
x = np.linspace(0, 2*np.pi, N)
data = pd.DataFrame({'A': np.sin(x), 'B': np.cos(x),
'Date': dates})
plt.plot_date(data['Date'], data['A'], '-')
plt.plot_date(data['Date'], data['B'], '-')
d = data['Date'].values
plt.fill_between(d, data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.show()
这篇关于 pandas 和Matplotlib-fill_between()vs datetime64的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!