找到newpoint与x中每个点之间的欧几里得距离或曼哈顿距离.按升序排列这些距离.返回x中最接近newpoint的k数据点.让我们慢慢地做每一步.步骤1某人可能执行此操作的一种方式可能是在for循环中,如下所示:N = size(x,1);dists = zeros(N,1);for idx = 1 : N dists(idx) = sqrt(sum((x(idx,:) - newpoint).^2));end如果要实现曼哈顿距离,则只需:N = size(x,1);dists = zeros(N,1);for idx = 1 : N dists(idx) = sum(abs(x(idx,:) - newpoint));end dists将是一个N元素向量,其中包含x和newpoint中每个数据点之间的距离.我们在newpoint和x中的数据点之间进行逐元素减法,将差异平方,然后 sum 在一起.然后,该和是平方根,从而完成了欧几里得距离.对于曼哈顿距离,您需要逐个元素相减,取绝对值,然后将所有分量求和.这可能是最容易理解的实现,但可能效率最低...尤其是对于更大的数据集和更大的数据维度.另一种可能的解决方案是复制newpoint并使该矩阵的大小与x相同,然后对该矩阵进行逐元素减法,然后对每一行的所有列求和平方根.因此,我们可以执行以下操作:N = size(x, 1);dists = sqrt(sum((x - repmat(newpoint, N, 1)).^2, 2));对于曼哈顿距离,您可以这样做:N = size(x, 1);dists = sum(abs(x - repmat(newpoint, N, 1)), 2); repmat 取一个矩阵或向量并将它们重复一个在给定方向上经过一定次数的时间.在我们的例子中,我们想取我们的newpoint向量,并将这N次叠加在一起,以创建一个N x M矩阵,其中每行的长度为M个元素.我们将这两个矩阵相减,然后对每个分量求平方.完成此操作后,我们对每一行的所有列进行sum运算,最后取所有结果的平方根.对于曼哈顿距离,我们进行减法运算,取绝对值,然后求和.但是,我认为最有效的方法是使用 bsxfun .这实质上完成了我们在幕后通过单个函数调用所讨论的复制.因此,代码就是这样:dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));在我看来,这看起来更清洁,而且很重要.对于曼哈顿距离,您可以这样做:dists = sum(abs(bsxfun(@minus, x, newpoint)), 2);步骤2现在我们有了距离,我们只需对它们进行排序即可.我们可以使用 sort 来对距离进行排序:[d,ind] = sort(dists); d包含按升序排序的距离,而ind告诉您 unsorted 数组中出现在 sorted 结果中的每个值.我们需要使用ind,提取此向量的前k个元素,然后使用ind索引到我们的x数据矩阵中,以返回最接近newpoint的那些点.步骤#3最后一步是现在返回最接近newpoint的那些k数据点.我们可以通过以下方式非常简单地完成此操作:ind_closest = ind(1:k);x_closest = x(ind_closest,:); ind_closest应包含原始数据矩阵x中最接近newpoint的索引.具体来说,ind_closest包含您需要在x中进行采样的行,以获得与newpoint最接近的点. x_closest将包含这些实际数据点.为了您的复制和粘贴乐趣,代码如下所示:dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));%// Or do this for Manhattan% dists = sum(abs(bsxfun(@minus, x, newpoint)), 2);[d,ind] = sort(dists);ind_closest = ind(1:k);x_closest = x(ind_closest,:);遍历您的示例,让我们看一下运行中的代码:load fisheririsx = meas(:,3:4);newpoint = [5 1.45];k = 10;%// Use Euclideandists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));[d,ind] = sort(dists);ind_closest = ind(1:k);x_closest = x(ind_closest,:);通过检查ind_closest和x_closest,这就是我们得到的:>> ind_closestind_closest = 120 53 73 134 84 77 78 51 64 87>> x_closestx_closest = 5.0000 1.5000 4.9000 1.5000 4.9000 1.5000 5.1000 1.5000 5.1000 1.6000 4.8000 1.4000 5.0000 1.7000 4.7000 1.4000 4.7000 1.4000 4.7000 1.5000如果运行knnsearch,您将看到变量n与ind_closest匹配.但是,变量d返回从newpoint到每个点x的距离,而不是实际数据点本身.如果您想要实际的距离,只需在我编写的代码之后执行以下操作即可:dist_sorted = d(1:k);请注意,以上答案在一批N示例中仅使用一个查询点. KNN通常经常在多个示例上同时使用.假设我们有要在KNN中测试的Q查询点.这将生成一个k x M x Q矩阵,其中对于每个示例或每个切片,我们将返回维度为M的k最近点.或者,我们可以返回k个最接近点的 ID ,从而生成一个Q x k矩阵.让我们计算两者.一种简单的方法是将上述代码循环应用,并遍历每个示例.在分配Q x k矩阵并应用基于bsxfun的方法来将输出矩阵的每一行设置为数据集中的k最近点时,类似的方法将起作用数据集就像以前一样.我们还将保持与上一个示例相同的尺寸,并且我将使用四个示例,因此Q = 4和M = 2:%// Load the data and create the query pointsload fisheriris;x = meas(:,3:4);newpoints = [5 1.45; 7 2; 4 2.5; 2 3.5];%// Define k and the output matricesQ = size(newpoints, 1);M = size(x, 2);k = 10;x_closest = zeros(k, M, Q);ind_closest = zeros(Q, k);%// Loop through each point and do logic as seen above:for ii = 1 : Q %// Get the point newpoint = newpoints(ii, :); %// Use Euclidean dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2)); [d,ind] = sort(dists); %// New - Output the IDs of the match as well as the points themselves ind_closest(ii, :) = ind(1 : k).'; x_closest(:, :, ii) = x(ind_closest(ii, :), :);end尽管这非常好,但我们可以做得更好.有一种方法可以有效地计算两组向量之间的平方欧几里德距离.如果您想在曼哈顿进行此操作,我将其保留为练习.咨询此博客,因为A是Q1 x M矩阵,其中每一行是维度点M,具有Q1点,而B是Q2 x M矩阵,其中每一行也是具有Q2点的维度点M的点,我们可以有效地计算距离矩阵D(i, j),其中行i和列j的元素表示A的行i之间的距离和B的j行使用以下矩阵公式:nA = sum(A.^2, 2); %// Sum of squares for each row of AnB = sum(B.^2, 2); %// Sum of squares for each row of BD = bsxfun(@plus, nA, nB.') - 2*A*B.'; %// Compute distance matrixD = sqrt(D); %// Compute square root to complete calculation因此,如果让A为查询点矩阵,而让B为由原始数据组成的数据集,则可以通过分别对每一行进行排序并确定k来确定k最接近的点.每行的最小位置.我们还可以额外地使用它本身来检索实际点.因此:%// Load the data and create the query pointsload fisheriris;x = meas(:,3:4);newpoints = [5 1.45; 7 2; 4 2.5; 2 3.5];%// Define k and other variablesk = 10;Q = size(newpoints, 1);M = size(x, 2);nA = sum(newpoints.^2, 2); %// Sum of squares for each row of AnB = sum(x.^2, 2); %// Sum of squares for each row of BD = bsxfun(@plus, nA, nB.') - 2*newpoints*x.'; %// Compute distance matrixD = sqrt(D); %// Compute square root to complete calculation%// Sort the distances[d, ind] = sort(D, 2);%// Get the indices of the closest distancesind_closest = ind(:, 1:k);%// Also get the nearest pointsx_closest = permute(reshape(x(ind_closest(:), :).', M, k, []), [2 1 3]);我们看到,用于计算距离矩阵的逻辑是相同的,但是一些变量已更改为适合该示例.我们还使用sort的两个输入版本对每一行进行独立排序,因此ind将包含每行的ID,而d将包含相应的距离.然后,我们可以通过将矩阵简单地截断为k列来找出最接近每个查询点的索引.然后,我们使用 permute 和 reshape 来确定相关的最接近点.我们首先使用所有最接近的索引,并创建一个点矩阵,该点矩阵将所有ID相互堆叠,从而得到一个Q * k x M矩阵.使用reshape和permute允许我们创建3D矩阵,从而使其像我们指定的那样成为k x M x Q矩阵.如果您想自己获取实际的距离,我们可以将其索引为d并获取所需的内容.为此,您需要使用 sub2ind 来获取线性索引,因此我们可以一枪索引到d中. ind_closest的值已经为我们提供了需要访问哪些列.我们需要访问的行仅是1,k次,2,k次,依此类推,直到Q. k是我们要返回的点数:row_indices = repmat((1:Q).', 1, k);linear_ind = sub2ind(size(d), row_indices, ind_closest);dist_sorted = D(linear_ind);当我们对以上查询点运行以上代码时,这些是我们获得的索引,点和距离:>> ind_closestind_closest = 120 134 53 73 84 77 78 51 64 87 123 119 118 106 132 108 131 136 126 110 107 62 86 122 71 127 139 115 60 52 99 65 58 94 60 61 80 44 54 72>> x_closestx_closest(:,:,1) = 5.0000 1.5000 6.7000 2.0000 4.5000 1.7000 3.0000 1.1000 5.1000 1.5000 6.9000 2.3000 4.2000 1.5000 3.6000 1.3000 4.9000 1.5000 6.7000 2.2000x_closest(:,:,2) = 4.5000 1.6000 3.3000 1.0000 4.9000 1.5000 6.6000 2.1000 4.9000 2.0000 3.3000 1.0000 5.1000 1.6000 6.4000 2.0000 4.8000 1.8000 3.9000 1.4000x_closest(:,:,3) = 4.8000 1.4000 6.3000 1.8000 4.8000 1.8000 3.5000 1.0000 5.0000 1.7000 6.1000 1.9000 4.8000 1.8000 3.5000 1.0000 4.7000 1.4000 6.1000 2.3000x_closest(:,:,4) = 5.1000 2.4000 1.6000 0.6000 4.7000 1.4000 6.0000 1.8000 3.9000 1.4000 4.0000 1.3000 4.7000 1.5000 6.1000 2.5000 4.5000 1.5000 4.0000 1.3000>> dist_sorteddist_sorted = 0.0500 0.1118 0.1118 0.1118 0.1803 0.2062 0.2500 0.3041 0.3041 0.3041 0.3000 0.3162 0.3606 0.4123 0.6000 0.7280 0.9055 0.9487 1.0198 1.0296 0.9434 1.0198 1.0296 1.0296 1.0630 1.0630 1.0630 1.1045 1.1045 1.1180 2.6000 2.7203 2.8178 2.8178 2.8320 2.9155 2.9155 2.9275 2.9732 2.9732要将其与knnsearch进行比较,您可以为第二个参数指定点矩阵,其中每行是一个查询点,您将看到此实现和knnsearch之间的索引和排序距离匹配. /p>希望这对您有所帮助.祝你好运!I am working on classifying simple data using KNN with Euclidean distance. I have seen an example on what I would like to do that is done with the MATLAB knnsearch function as shown below:load fisheririsx = meas(:,3:4);gscatter(x(:,1),x(:,2),species)newpoint = [5 1.45];[n,d] = knnsearch(x,newpoint,'k',10);line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o','linestyle','none','markersize',10)The above code takes a new point i.e. [5 1.45] and finds the 10 closest values to the new point. Can anyone please show me a MATLAB algorithm with a detailed explanation of what the knnsearch function does? Is there any other way to do this? 解决方案 The basis of the K-Nearest Neighbour (KNN) algorithm is that you have a data matrix that consists of N rows and M columns where N is the number of data points that we have, while M is the dimensionality of each data point. For example, if we placed Cartesian co-ordinates inside a data matrix, this is usually a N x 2 or a N x 3 matrix. With this data matrix, you provide a query point and you search for the closest k points within this data matrix that are the closest to this query point.We usually use the Euclidean distance between the query and the rest of your points in your data matrix to calculate our distances. However, other distances like the L1 or the City-Block / Manhattan distance are also used. After this operation, you will have N Euclidean or Manhattan distances which symbolize the distances between the query with each corresponding point in the data set. Once you find these, you simply search for the k nearest points to the query by sorting the distances in ascending order and retrieving those k points that have the smallest distance between your data set and the query.Supposing your data matrix was stored in x, and newpoint is a sample point where it has M columns (i.e. 1 x M), this is the general procedure you would follow in point form:Find the Euclidean or Manhattan distance between newpoint and every point in x.Sort these distances in ascending order.Return the k data points in x that are closest to newpoint.Let's do each step slowly.Step #1One way that someone may do this is perhaps in a for loop like so:N = size(x,1);dists = zeros(N,1);for idx = 1 : N dists(idx) = sqrt(sum((x(idx,:) - newpoint).^2));endIf you wanted to implement the Manhattan distance, this would simply be:N = size(x,1);dists = zeros(N,1);for idx = 1 : N dists(idx) = sum(abs(x(idx,:) - newpoint));enddists would be a N element vector that contains the distances between each data point in x and newpoint. We do an element-by-element subtraction between newpoint and a data point in x, square the differences, then sum them all together. This sum is then square rooted, which completes the Euclidean distance. For the Manhattan distance, you would perform an element by element subtraction, take the absolute values, then sum all of the components together. This is probably the most simplest of the implementations to understand, but it could possibly be the most inefficient... especially for larger sized data sets and larger dimensionality of your data.Another possible solution would be to replicate newpoint and make this matrix the same size as x, then doing an element-by-element subtraction of this matrix, then summing over all of the columns for each row and doing the square root. Therefore, we can do something like this:N = size(x, 1);dists = sqrt(sum((x - repmat(newpoint, N, 1)).^2, 2));For the Manhattan distance, you would do:N = size(x, 1);dists = sum(abs(x - repmat(newpoint, N, 1)), 2);repmat takes a matrix or vector and repeats them a certain amount of times in a given direction. In our case, we want to take our newpoint vector, and stack this N times on top of each other to create a N x M matrix, where each row is M elements long. We subtract these two matrices together, then square each component. Once we do this, we sum over all of the columns for each row and finally take the square root of all result. For the Manhattan distance, we do the subtraction, take the absolute value and then sum.However, the most efficient way to do this in my opinion would be to use bsxfun. This essentially does the replication that we talked about under the hood with a single function call. Therefore, the code would simply be this:dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));To me this looks much cleaner and to the point. For the Manhattan distance, you would do:dists = sum(abs(bsxfun(@minus, x, newpoint)), 2);Step #2Now that we have our distances, we simply sort them. We can use sort to sort our distances:[d,ind] = sort(dists);d would contain the distances sorted in ascending order, while ind tells you for each value in the unsorted array where it appears in the sorted result. We need to use ind, extract the first k elements of this vector, then use ind to index into our x data matrix to return those points that were the closest to newpoint.Step #3The final step is to now return those k data points that are closest to newpoint. We can do this very simply by:ind_closest = ind(1:k);x_closest = x(ind_closest,:);ind_closest should contain the indices in the original data matrix x that are the closest to newpoint. Specifically, ind_closest contains which rows you need to sample from in x to obtain the closest points to newpoint. x_closest will contain those actual data points.For your copying and pasting pleasure, this is what the code looks like:dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));%// Or do this for Manhattan% dists = sum(abs(bsxfun(@minus, x, newpoint)), 2);[d,ind] = sort(dists);ind_closest = ind(1:k);x_closest = x(ind_closest,:);Running through your example, let's see our code in action:load fisheririsx = meas(:,3:4);newpoint = [5 1.45];k = 10;%// Use Euclideandists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2));[d,ind] = sort(dists);ind_closest = ind(1:k);x_closest = x(ind_closest,:);By inspecting ind_closest and x_closest, this is what we get:>> ind_closestind_closest = 120 53 73 134 84 77 78 51 64 87>> x_closestx_closest = 5.0000 1.5000 4.9000 1.5000 4.9000 1.5000 5.1000 1.5000 5.1000 1.6000 4.8000 1.4000 5.0000 1.7000 4.7000 1.4000 4.7000 1.4000 4.7000 1.5000If you ran knnsearch, you will see that your variable n matches up with ind_closest. However, the variable d returns the distances from newpoint to each point x, not the actual data points themselves. If you want the actual distances, simply do the following after the code I wrote:dist_sorted = d(1:k);Note that the above answer uses only one query point in a batch of N examples. Very frequently KNN is used on multiple examples simultaneously. Supposing that we have Q query points that we want to test in the KNN. This would result in a k x M x Q matrix where for each example or each slice, we return the k closest points with a dimensionality of M. Alternatively, we can return the IDs of the k closest points thus resulting in a Q x k matrix. Let's compute both.A naive way to do this would be to apply the above code in a loop and loop over every example.Something like this would work where we allocate a Q x k matrix and apply the bsxfun based approach to set each row of the output matrix to the k closest points in the dataset, where we will use the Fisher Iris dataset just like what we had before. We'll also keep the same dimensionality as we did in the previous example and I'll use four examples, so Q = 4 and M = 2:%// Load the data and create the query pointsload fisheriris;x = meas(:,3:4);newpoints = [5 1.45; 7 2; 4 2.5; 2 3.5];%// Define k and the output matricesQ = size(newpoints, 1);M = size(x, 2);k = 10;x_closest = zeros(k, M, Q);ind_closest = zeros(Q, k);%// Loop through each point and do logic as seen above:for ii = 1 : Q %// Get the point newpoint = newpoints(ii, :); %// Use Euclidean dists = sqrt(sum(bsxfun(@minus, x, newpoint).^2, 2)); [d,ind] = sort(dists); %// New - Output the IDs of the match as well as the points themselves ind_closest(ii, :) = ind(1 : k).'; x_closest(:, :, ii) = x(ind_closest(ii, :), :);endThough this is very nice, we can do even better. There is a way to efficiently compute the squared Euclidean distance between two sets of vectors. I'll leave it as an exercise if you want to do this with the Manhattan. Consulting this blog, given that A is a Q1 x M matrix where each row is a point of dimensionality M with Q1 points and B is a Q2 x M matrix where each row is also a point of dimensionality M with Q2 points, we can efficiently compute a distance matrix D(i, j) where the element at row i and column j denotes the distance between row i of A and row j of B using the following matrix formulation:nA = sum(A.^2, 2); %// Sum of squares for each row of AnB = sum(B.^2, 2); %// Sum of squares for each row of BD = bsxfun(@plus, nA, nB.') - 2*A*B.'; %// Compute distance matrixD = sqrt(D); %// Compute square root to complete calculationTherefore, if we let A be a matrix of query points and B be the dataset consisting of your original data, we can determine the k closest points by sorting each row individually and determining the k locations of each row that were the smallest. We can also additionally use this to retrieve the actual points themselves.Therefore:%// Load the data and create the query pointsload fisheriris;x = meas(:,3:4);newpoints = [5 1.45; 7 2; 4 2.5; 2 3.5];%// Define k and other variablesk = 10;Q = size(newpoints, 1);M = size(x, 2);nA = sum(newpoints.^2, 2); %// Sum of squares for each row of AnB = sum(x.^2, 2); %// Sum of squares for each row of BD = bsxfun(@plus, nA, nB.') - 2*newpoints*x.'; %// Compute distance matrixD = sqrt(D); %// Compute square root to complete calculation%// Sort the distances[d, ind] = sort(D, 2);%// Get the indices of the closest distancesind_closest = ind(:, 1:k);%// Also get the nearest pointsx_closest = permute(reshape(x(ind_closest(:), :).', M, k, []), [2 1 3]);We see that we used the logic for computing the distance matrix is the same but some variables have changed to suit the example. We also sort each row independently using the two input version of sort and so ind will contain the IDs per row and d will contain the corresponding distances. We then figure out which indices are the closest to each query point by simply truncating this matrix to k columns. We then use permute and reshape to determine what the associated closest points are. We first use all of the closest indices and create a point matrix that stacks all of the IDs on top of each other so we get a Q * k x M matrix. Using reshape and permute allows us to create our 3D matrix so that it becomes a k x M x Q matrix like we have specified. If you wanted to get the actual distances themselves, we can index into d and grab what we need. To do this, you will need to use sub2ind to obtain the linear indices so we can index into d in one shot. The values of ind_closest already give us which columns we need to access. The rows we need to access are simply 1, k times, 2, k times, etc. up to Q. k is for the number of points we wanted to return:row_indices = repmat((1:Q).', 1, k);linear_ind = sub2ind(size(d), row_indices, ind_closest);dist_sorted = D(linear_ind);When we run the above code for the above query points, these are the indices, points and distances we get:>> ind_closestind_closest = 120 134 53 73 84 77 78 51 64 87 123 119 118 106 132 108 131 136 126 110 107 62 86 122 71 127 139 115 60 52 99 65 58 94 60 61 80 44 54 72>> x_closestx_closest(:,:,1) = 5.0000 1.5000 6.7000 2.0000 4.5000 1.7000 3.0000 1.1000 5.1000 1.5000 6.9000 2.3000 4.2000 1.5000 3.6000 1.3000 4.9000 1.5000 6.7000 2.2000x_closest(:,:,2) = 4.5000 1.6000 3.3000 1.0000 4.9000 1.5000 6.6000 2.1000 4.9000 2.0000 3.3000 1.0000 5.1000 1.6000 6.4000 2.0000 4.8000 1.8000 3.9000 1.4000x_closest(:,:,3) = 4.8000 1.4000 6.3000 1.8000 4.8000 1.8000 3.5000 1.0000 5.0000 1.7000 6.1000 1.9000 4.8000 1.8000 3.5000 1.0000 4.7000 1.4000 6.1000 2.3000x_closest(:,:,4) = 5.1000 2.4000 1.6000 0.6000 4.7000 1.4000 6.0000 1.8000 3.9000 1.4000 4.0000 1.3000 4.7000 1.5000 6.1000 2.5000 4.5000 1.5000 4.0000 1.3000>> dist_sorteddist_sorted = 0.0500 0.1118 0.1118 0.1118 0.1803 0.2062 0.2500 0.3041 0.3041 0.3041 0.3000 0.3162 0.3606 0.4123 0.6000 0.7280 0.9055 0.9487 1.0198 1.0296 0.9434 1.0198 1.0296 1.0296 1.0630 1.0630 1.0630 1.1045 1.1045 1.1180 2.6000 2.7203 2.8178 2.8178 2.8320 2.9155 2.9155 2.9275 2.9732 2.9732To compare this with knnsearch, you would instead specify a matrix of points for the second parameter where each row is a query point and you will see that the indices and sorted distances match between this implementation and knnsearch.Hope this helps you. Good luck! 这篇关于寻找K近邻及其实现的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-11 07:35