本文介绍了OWL:作用域和范围的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

范围域有什么区别?还有范围范围范围.Protege 中如何定义一个属性具有两个不同的作用域域或作用域范围?

附言我的意思是使用两个不同范围的域意味着:
如果域是 A,R 的范围是 B
如果域是 C,R 的范围是 D

解决方案

对象属性 R 的域是 A 的事实可以这样写:

R some owl:Thing SubClassOf A

对象属性R的范围是B的事实可以这样写:

owl:Thing SubClassOf R only B

可以稍微概括这些记录.

R 的作用域为/by BA:

R 一些 B SubClassOf A

R 作用域为/by A 的范围是 B:

A SubClassOf R B

在 Protégé 中,您可以在这些地方输入这些公理(按需要多次按下 ⊕ 按钮):

  • 主动本体>一般类公理 >一般类公理,或
  • 实体 >类 >[类] >说明 >一般类公理.

此外,OWLAx 插件可以生成作用域和非作用域公理.


在 DL 术语中,作用域和范围公理是:

  • ∃R.B ⊑ A 而不是 ∃R.⊤ ⊑ A,
  • A ⊑ ∀R.B 而不是 ⊤ ⊑ ∀R.B.

在 SWRL 方面:

  • B(?y) ^ R(?x,?y) ->A(?x) 而不是 R(?x,?y) ->A(?x),
  • A(?x) ^​​ R(?x,?y) ->B(?y) 而不是 R(?x,?y) ->B(?y).

What is the difference between scoped domain and domain? Also scoped range and range. And how is it defined in Protege for a single property to have two different scoped domains or scoped ranges?

P.S. I mean using two different scoped domain means:
R has range B if domain is A
R has range D if domain is C

解决方案

The fact that the domain of the object property R is A could be written in this way:

R some owl:Thing SubClassOf A

The fact that the range of the object property R is B could be written in this way:

owl:Thing SubClassOf R only B

One can generalize these records slightly.

The domain of R scoped with / by B is A:

R some B SubClassOf A

The range of R scoped with / by A is B:

A SubClassOf R only B

In Protégé, one can type these axioms in these places (pressing the ⊕ button as many times as one wishes):

  • Active Ontology > General Class Axioms > General Class Axioms, or
  • Entities > Classes > [Class] > Description > General Class Axioms.

Also, the OWLAx plugin can generate both scoped and non-scoped axioms.


In DL terms, scoped domain and range axioms are:

  • ∃R.B ⊑ A instead of ∃R.⊤ ⊑ A,
  • A ⊑ ∀R.B instead of ⊤ ⊑ ∀R.B.

In SWRL terms:

  • B(?y) ^ R(?x,?y) -> A(?x) instead of R(?x,?y) -> A(?x),
  • A(?x) ^ R(?x,?y) -> B(?y) instead of R(?x,?y) -> B(?y).

这篇关于OWL:作用域和范围的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-11 07:34