本文介绍了如何从邮政编码中获取坐标并将其添加到使用循环的df中的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有以下数据框:

d = {'Postcode': ['M3A','M4A','M5A','M6A','M9A','M1B'], 'Borough': ['North York', 'Downtown Toronto', 'Etobicoke',
                                                                    'Scarborough', 'East York', 'York'],
     'Neighbourhood': ['Parkwoods', 'Victoria Village', 'Harbourfront', 'Regent Park',
       'Lawrence Heights', 'Lawrence Manor']}
post_df = pd.DataFrame(data = d)

Wich会产生类似的内容:

Wich yields something like:

    Postcode    Borough             Neighbourhood
0   M3A         North York          Parkwoods
1   M4A         Downtown Toronto    Victoria Village
2   M5A         Etobicoke           Harbourfront
3   M6A         Scarborough         Regent Park
4   M9A         East York           Lawrence Heights
5   M1B         York                Lawrence Manor

我想获取每个邮政编码的所有纬度和经度.我想出了这样的代码:

I want to get all the latitudes and longitudes for each postal code.I figured out this code to do so:

import geocoder

# initialize your variable to None
lat_lng_coords = None

# loop until you get the coordinates
while(lat_lng_coords is None):
  g = geocoder.google('{}, Toronto, Ontario'.format(postal_code_from_df))
  lat_lng_coords = g.latlng

latitude = lat_lng_coords[0]
longitude = lat_lng_coords[1]

现在我的问题是:使用前面的代码,我想获取每个邮政编码的每个纬度和经度,并将它们添加到此现有df中称为纬度"和经度"的2个新列中.我该如何使用单个循环来避免一一搜索每个邮政编码坐标?

now my question is: Using the previous code, i would like to get each latitude and longitude for each postal code and add them to 2 new columns in this existing df called 'Latitude' and 'Longitude'. How could i do that using a single loop to avoid searching each postal code coordinates one by one?

非常感谢您

推荐答案

您可以使用df.apply.像这样:

post_df['Latitude'], post_df['Longitude'] = zip(*post_df['Postcode'].apply(get_geocoder))

可以按@Ankur所述定义get_geocoder的地方

Where get_geocoder can be defined as mentioned by @Ankur

这篇关于如何从邮政编码中获取坐标并将其添加到使用循环的df中的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-11 04:55