问题描述
我正在尝试根据时间范围合并两个表.我仅在此找到了一些旧答案(例如基于日期范围的数据表合并)不使用lubridate
.
I am trying to merge two tables based on time ranges. I only found some old answers on this (e.g. Data Table merge based on date ranges) which don't use lubridate
.
实际上,lubridate
提供了%within%
函数,该函数可以检查日期是否在间隔内.我构建了一个最小的示例,想知道是否存在一种基于重叠的日期/间隔将这些数据帧合并在一起的方法.因此,检查df1$Date
是否在df2$interval
中.
Actually, lubridate
provides the %within%
function which can check if a date is within an interval. I constructed a minimal example and wondering if there is a way to merge these data frames together based on the overlapping dates/intervals. So checking if df1$Date
is in df2$interval
.
library(lubridate)
df1 <- data.frame(Date=c(ymd('20161222'),ymd('20161223'),ymd('20161228'),ymd('20170322')),
User=c('a','b','a','a'),
Units=c(1,2,3,1))
df2 <- data.frame(User=c('a','b','a'),
Start=c(ymd('20140101'), ymd('20140101'), ymd('20170101')),
End=c(ymd('20161231'),ymd('20170331'),ymd('20170331')),
Price=c(10,10,20))
df2$interval <- interval(df2$Start, df2$End)
我的预期输出将是这样
| |User |Date | Units| Price|
|:--|:----|:----------|-----:|-----:|
|1 |a |2016-12-22 | 1| 10|
|3 |a |2016-12-28 | 3| 10|
|6 |a |2017-03-22 | 1| 20|
|7 |b |2016-12-23 | 2| 10|
推荐答案
对于大型数据框,这可能效率不高(因为您正在创建更大的匹配项和子集),而且我敢肯定还有一种更优雅的方法,但是可行:
This may be inefficient for large dataframes (since you're creating a much larger match and subsetting), and I'm sure there's a more elegant way, but this works:
output <- merge(df1,df2,by="User")[test$Date %within% test$interval,]
或者您可以使用循环:
for(x in 1:length(df1$User)){
df1$Price[x]<-df2[(df1$Date[x] %within% df2$interval)&df1$User[x]==df2$User,]$Price
}
我确定您也可以创建函数并使用apply ...
I'm sure you could also make a function and use apply...
这篇关于使用lubridate根据时间范围/间隔合并表的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!