问题描述
在Keras中微调分类模型时,它打印了val_acc: 0.8456
. 此代码用于微调.
While fine tuning a classification model in Keras, it printed val_acc: 0.8456
. This code was used for fine-tuning.
微调后,手动加载经过训练的模型并预测估值集,则会收到0.28
更低的准确性.
After fine-tuning, manually loading the trained model and predicting the valuation set, a much lower accuracy of 0.28
was received.
以下代码用于评估:
model = load_model(MODEL_PATH)
...
img = kimage.load_img(img_path, target_size=target_size)
x = kimage.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = vgg19.preprocess_input(x)
pred = model.predict(x)
问题
0.85 != 0.28
准确性差异很大的原因是什么?
Question
What might be the cause for the big discrepancy in accuracy 0.85 != 0.28
?
推荐答案
您正在使用不同的预处理进行培训和测试.具体来说,
You're using different preprocessing for training and testing.Specifically,
rescale = 1./255
用于训练,但是
x = vgg19.preprocess_input(x)
用于测试.
imagenet_utils.preprocess_input()
的作用是减去平均值(如名称所建议,在ImageNet上计算):
What imagenet_utils.preprocess_input()
does is subtracting the mean (computed on ImageNet, as suggested by the name):
# Zero-center by mean pixel
x[:, :, :, 0] -= 103.939
x[:, :, :, 1] -= 116.779
x[:, :, :, 2] -= 123.68
因此,它与对训练数据进行的预处理完全不同.
So it's fairly different from the preprocessing applied on your training data.
这篇关于微调模型中的Keras精度差异的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!