PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分

上一篇中简单讲解了用于多源最短路的的方法:枚举每一条边。

我们可以先考虑优化空间复杂度(压缩掉第一维\(k\)),于是,DP状态变为:

\[dp[u]表示从s(起点)到u的最短路径\]

转移方程为:

\[dp[v]=min(dp[v],dp[u]+w[v])\]

关于状态压缩后的正确性:最有可能令人不理解的部分就是:在同一轮更新中,我们可能会用已经更新完的值再去更新别的值。这就导致,同一论更新中,不同节点被更新到的DP值对应的\(k\)可能不同。(如果没看懂,就看下面这张图)

Bellman-Ford算法与SPFA算法详解-LMLPHP

但是实际上,我们其实并不关心到底走了几步,而只关心最短路的边权和。所以,像这样的“错位更新”并不会引起错误。

于是,我们可以得到新的代码:

struct Edge {
	int u, v; // 边的两个端点
	int w; // 边的权值
};

int n; // 点数
int m; // 边数
Edge e[MAXM]; // 所有的边
int dp[MAXN]; // 解释见上方

void bellman_ford(int start) {
	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF
	dp[start] = 0;
	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)
		for(int j = 1; j <= m; j++) { // 枚举每一条边
			dp[e[j].v] = min(dp[e[j].v], dp[e[j].u] + e[j].w);
		}
	}
}

我们可以继续考虑优化时间复杂度。显然,如果在某一轮的更新后,发现并没有任何一个值被更新,那么就意味着:这张图已经不能再被更新了(已经求出\(s\)到每个点的最短路),那就可以直接break了。

所以,优化后的代码如下:

Bellman-Ford算法模板

struct Edge {
	int v; // 边指向的节点
	int w; // 边的权值
};

int n; // 点数
int m; // 边数
vector<Edge> g[MAXN]; // 保存从每个节点发出的边
int dp[MAXN]; // 解释见上方

void bellman_ford(int start) {
	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF
	dp[start] = 0;
	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)
		bool updated = 0; // 记录是否有节点被更新
		for(int i = 1; i <= n; i++) { // 枚举每一个节点
			if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点
				continue;
			}
			for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边
				if(dp[i] + e.w < dp[e.v]) {
					dp[e.v] = dp[i] + e.w;
					updated = 1; // 标记有值被更新
				}
			}
		}
		if(!updated) {
			break; // 没有节点被更新,直接退出
		}
	}
}

这就是最常见的Bellman-Ford朴素算法了。

同时,也可以看到,本次优化后的代码中将「直接储存所有边」的方式改为了使用「邻接表」。这是因为邻接表在图论算法中更加常用,也使得Bellman-Ford算法可以更容易地和其他算法配合使用。

SPFA算法

SPFA算法(Shortest Path Faster Algorithm),顾名思义就是一种让Bellman-Ford跑得更快的方法。

在上一部分的最后,我们对于没有更新的情况,直接break掉,来优化时间。但是,稍加思考就会发现:有的时候,我们会为了唯一几个被更新过的节点,而再把所有的节点遍历一遍,那么这样就会产生时间的浪费。所以,SPFA本质上就是使用队列来解决这样的问题。

下面是SPFA算法的基本步骤:

  1. 我们先设置好初始值(和Bellman-Ford一样),再将起点(\(s\))加入队列中。

  2. 每次从队列中取出一个节点,尝试用它去更新与它相连的节点;如果某个节点的最短距离被更新了,那么将这个节点加入队列。

  3. 回到步骤2

于是,很容易写出对应的代码:

SPFA算法模板

struct Edge {
	int v; // 边指向的节点
	int w; // 边的权值
};

int n; // 点数
int m; // 边数
vector<Edge> g[MAXN]; // 保存从每个节点发出的边
int dp[MAXN]; // 定义没有变
queue<int> q; // 储存点用的队列
bool vis[MAXN]; // 记录每个节点当前是否在队列中

void spfa(int start) {
	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF
	dp[start] = 0;
	q.push(start);
	vis[start] = 1; // 标记一下
	while(!q.empty()) {
		int x = q.front(); // 取出一个节点
		q.pop();
		vis[x] = 0; // 清除标记,因为下次还有可能入队
		for(Edge &e : g[x]) { // 枚举从这个节点发出的每一条边
			if(dp[x] + e.w < dp[e.v]) {
				dp[e.v] = dp[x] + e.w;
				if(!vis[e.v]) { // 如果这个节点现在不在队列中
					q.push(e.v); // 那就把它加入队列
					vis[e.v] = 1; // 标记一下
				}
			}
		}
	}
}

一道测试用的例题:P4779 【模板】单源最短路径(标准版)

Bellman-Ford & SPFA判断负环

负环,就是边权和为负数的环。负环是最短路算法中一个很重要的问题,因为只要进入一个负环,最短距离就会无限减小。当然,这肯定不是我们希望的,所以接下来就要介绍如何使用Bellman-Ford算法或SPFA算法来判断一张图中是否包含负环。

显然,一张有向图上的任意一条简单路径最多只包含\(n-1\)条边(否则不可能是 简单 的)。而且,当图中没有负环时,两点间的最短路径一定是简单路径。所以,如果发现从起点到某个节点\(u\)的最短路径包含多于\(n-1\)条边,那么这条路径上一定包含负环。

所以,我们只需要在算法中添加一些简单的判断就可以实现判负环了。

具体方法:

  1. 对于普通的Bellman_ford算法,我们可以在完成DP后,在进行一遍更新,如果存在任意节点与起点之间的最短路径是可以被更新的,那么可以确定图中一定存在负环

  2. 对于SPFA算法,我们可以在更新最短路径的同时,记录每条最短路径上的边数,如果发现某条最短路径的边数大于\(n-1\),那么可以确定图中一定存在负环

于是,我们可以写出分别使用这两种算法来判负环的代码:

Bellman-Ford判负环模板

struct Edge {
	int v; // 边指向的节点
	int w; // 边的权值
};

int n; // 点数
int m; // 边数
vector<Edge> g[MAXN]; // 保存从每个节点发出的边
int dp[MAXN];

bool bellman_ford_check_ncycle(int start) {
	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF
	dp[start] = 0;
	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)
		bool updated = 0; // 记录是否有节点被更新
		for(int i = 1; i <= n; i++) { // 枚举每一个节点
			if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点
				continue;
			}
			for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边
				if(dp[i] + e.w < dp[e.v]) {
					dp[e.v] = dp[i] + e.w;
					updated = 1; // 标记有值被更新
				}
			}
		}
		if(!updated) {
			return 0; // 没有节点被更新,一定没有负环
		}
	}
	for(int i = 1; i <= n; i++) { // 枚举每一个节点
		if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点
			continue;
		}
		for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边
			if(dp[i] + e.w < dp[e.v]) {
				return 1; // 还能被更新说明有负环
			}
		}
	}
	return 0;
}

SPFA判负环模板

struct Edge {
	int v; // 边指向的节点
	int w; // 边的权值
};

int n; // 点数
int m; // 边数
vector<Edge> g[MAXN]; // 保存从每个节点发出的边
int dp[MAXN]; // dp的定义没有变
int cnt[MAXN]; // 记录从起点到节点u的最短路径中的边数
queue<int> q; // 储存点用的队列
bool vis[MAXN]; // 记录每个节点当前是否在队列中

bool spfa_check_ncycle(int start) { // SPFA判负环
	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF
	dp[start] = 0;
	q.push(start);
	vis[start] = 1; // 标记一下
	while(!q.empty()) {
		int x = q.front(); // 取出一个节点
		q.pop();
		vis[x] = 0; // 清除标记,因为下次还有可能入队
		for(Edge &e : g[x]) { // 枚举从这个节点发出的每一条边
			if(dp[x] + e.w < dp[e.v]) {
				dp[e.v] = dp[x] + e.w;
				cnt[e.v] = cnt[e.v] + 1; // 多了当前这条边
				if(cnt[e.v] >= n) { // 从起点到v的最短路径上有多于n - 1条边
					return 1; // 一定出现了负环
				}
				if(!vis[e.v]) { // 如果这个节点现在不在队列中
					q.push(e.v); // 那就把它加入队列
					vis[e.v] = 1; // 标记一下
				}
			}
		}
	}
	return 0; // 没有负环
}

一道测试用的例题:P3385 【模板】负环

08-09 20:26