本文介绍了将列名从int转换为pandas中的字符串的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个带有混合列名的pandas数据框:
I have a pandas dataframe with mixed column names:
1,2,3,4,5,'Class'
1,2,3,4,5, 'Class'
当我将此数据帧保存到h5file时,它表示性能将由于混合类型而受到影响.如何在pandas中将整数转换为字符串?
When I save this dataframe to h5file, it says that the performance will be affected due to mixed types. How do I convert the integer to string in pandas?
推荐答案
您可以简单地使用df.columns = df.columns.astype(str)
:
In [26]: df = pd.DataFrame(np.random.random((3,6)), columns=[1,2,3,4,5,'Class'])
In [27]: df
Out[27]:
1 2 3 4 5 Class
0 0.773423 0.865091 0.614956 0.219458 0.837748 0.862177
1 0.544805 0.535341 0.323215 0.929041 0.042705 0.759294
2 0.215638 0.251063 0.648350 0.353999 0.986773 0.483313
In [28]: df.columns.map(type)
Out[28]:
array([<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>,
<class 'int'>, <class 'str'>], dtype=object)
In [29]: df.to_hdf("out.h5", "d1")
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->axis0] [items->None]
f(store)
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_items] [items->None]
f(store)
In [30]: df.columns = df.columns.astype(str)
In [31]: df.columns.map(type)
Out[31]:
array([<class 'str'>, <class 'str'>, <class 'str'>, <class 'str'>,
<class 'str'>, <class 'str'>], dtype=object)
In [32]: df.to_hdf("out.h5", "d1")
In [33]:
这篇关于将列名从int转换为pandas中的字符串的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!