本文介绍了为什么Drop1忽略混合模型的线性项?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有六个固定因素:F,以及一个随机因素R。我想使用语言R测试线性项、纯二次项和双向交互。因此,我构建了完全线性混合模型,并尝试使用drop1

测试其项
full.model <- lmer(Z ~ A + B + C + D + E + F
                     + I(A^2) + I(B^2) + I(C^2) + I(D^2) + I(E^2) + I(F^2)
                     + A:B + A:C + A:D + A:E + A:F
                           + B:C + B:D + B:E + B:F
                                 + C:D + C:E + C:F
                                       + D:E + D:F
                                             + E:F
                     + (1 | R), data=mydata, REML=FALSE)
drop1(full.model, test="Chisq")

似乎drop1完全忽略了线性项:

Single term deletions

Model:
Z ~ A + B + C + D + E + F + I(A^2) + I(B^2) + I(C^2) + I(D^2) +
    I(E^2) + I(F^2) + A:B + A:C + A:D + A:E + A:F + B:C + B:D +
    B:E + B:F + C:D + C:E + C:F + D:E + D:F + E:F + (1 | R)
       Df    AIC     LRT   Pr(Chi)
<none>    127177
I(A^2)  1 127610  434.81 < 2.2e-16 ***
I(B^2)  1 127378  203.36 < 2.2e-16 ***
I(C^2)  1 129208 2032.42 < 2.2e-16 ***
I(D^2)  1 127294  119.09 < 2.2e-16 ***
I(E^2)  1 127724  548.84 < 2.2e-16 ***
I(F^2)  1 127197   21.99 2.747e-06 ***
A:B     1 127295  120.24 < 2.2e-16 ***
A:C     1 127177    1.75  0.185467
A:D     1 127240   64.99 7.542e-16 ***
A:E     1 127223   48.30 3.655e-12 ***
A:F     1 127242   66.69 3.171e-16 ***
B:C     1 127180    5.36  0.020621 *
B:D     1 127202   27.12 1.909e-07 ***
B:E     1 127300  125.28 < 2.2e-16 ***
B:F     1 127192   16.60 4.625e-05 ***
C:D     1 127181    5.96  0.014638 *
C:E     1 127298  122.89 < 2.2e-16 ***
C:F     1 127176    0.77  0.380564
D:E     1 127223   47.76 4.813e-12 ***
D:F     1 127182    6.99  0.008191 **
E:F     1 127376  201.26 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

如果我从模型中排除交互:

full.model <- lmer(Z ~ A + B + C + D + E + F
                     + I(A^2) + I(B^2) + I(C^2) + I(D^2) + I(E^2) + I(F^2)
                     + (1 | R), data=mydata, REML=FALSE)
drop1(full.model, test="Chisq")

然后测试线性项:

Single term deletions

Model:
Z ~ A + B + C + D + E + F + I(A^2) + I(B^2) + I(C^2) + I(D^2) +
    I(E^2) + I(F^2) + (1 | R)
       Df    AIC    LRT   Pr(Chi)
<none>    127998
A       1 130130 2133.9 < 2.2e-16 ***
B       1 130177 2181.0 < 2.2e-16 ***
C       1 133464 5467.6 < 2.2e-16 ***
D       1 129484 1487.9 < 2.2e-16 ***
E       1 130571 2575.0 < 2.2e-16 ***
F       1 128009   12.7 0.0003731 ***
I(A^2)  1 128418  422.2 < 2.2e-16 ***
I(B^2)  1 128193  197.4 < 2.2e-16 ***
I(C^2)  1 129971 1975.1 < 2.2e-16 ***
I(D^2)  1 128112  115.6 < 2.2e-16 ***
I(E^2)  1 128529  533.0 < 2.2e-16 ***
I(F^2)  1 128017   21.3 3.838e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

推荐答案

因为这是drop1的工作方式(它并不特定于混合模型--您也会发现这种行为也适用于具有lm的常规线性模型)。发件人:?drop1

我在this CrossValidated post

中详细讨论了这一点

然而,正如VEnables在链接文章中实际描述的那样,如果您愿意,可以让R违反边际(p.15):

换句话说,使用scope = . ~ .将强制drop1忽略边缘。您这样做的风险自负-当您按照此过程操作时,您绝对应该能够向自己解释您实际测试的内容.

例如:

set.seed(101)
dd <- expand.grid(A=1:10,B=1:10,g=factor(1:10))
dd$y <- rnorm(1000)
library(lme4)
m1 <- lmer(y~A*B+(1|g),data=dd)
drop1(m1,scope=.~.)
## Single term deletions
##
## Model:
## y ~ A * B + (1 | g)
##        Df    AIC
## <none>    2761.9
## A       1 2761.7
## B       1 2762.4
## A:B     1 2763.1

这篇关于为什么Drop1忽略混合模型的线性项?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-06 06:59