本文介绍了为什么Drop1忽略混合模型的线性项?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有六个固定因素:F,以及一个随机因素R
。我想使用语言R测试线性项、纯二次项和双向交互。因此,我构建了完全线性混合模型,并尝试使用drop1
:测试其项full.model <- lmer(Z ~ A + B + C + D + E + F
+ I(A^2) + I(B^2) + I(C^2) + I(D^2) + I(E^2) + I(F^2)
+ A:B + A:C + A:D + A:E + A:F
+ B:C + B:D + B:E + B:F
+ C:D + C:E + C:F
+ D:E + D:F
+ E:F
+ (1 | R), data=mydata, REML=FALSE)
drop1(full.model, test="Chisq")
似乎drop1
完全忽略了线性项:
Single term deletions
Model:
Z ~ A + B + C + D + E + F + I(A^2) + I(B^2) + I(C^2) + I(D^2) +
I(E^2) + I(F^2) + A:B + A:C + A:D + A:E + A:F + B:C + B:D +
B:E + B:F + C:D + C:E + C:F + D:E + D:F + E:F + (1 | R)
Df AIC LRT Pr(Chi)
<none> 127177
I(A^2) 1 127610 434.81 < 2.2e-16 ***
I(B^2) 1 127378 203.36 < 2.2e-16 ***
I(C^2) 1 129208 2032.42 < 2.2e-16 ***
I(D^2) 1 127294 119.09 < 2.2e-16 ***
I(E^2) 1 127724 548.84 < 2.2e-16 ***
I(F^2) 1 127197 21.99 2.747e-06 ***
A:B 1 127295 120.24 < 2.2e-16 ***
A:C 1 127177 1.75 0.185467
A:D 1 127240 64.99 7.542e-16 ***
A:E 1 127223 48.30 3.655e-12 ***
A:F 1 127242 66.69 3.171e-16 ***
B:C 1 127180 5.36 0.020621 *
B:D 1 127202 27.12 1.909e-07 ***
B:E 1 127300 125.28 < 2.2e-16 ***
B:F 1 127192 16.60 4.625e-05 ***
C:D 1 127181 5.96 0.014638 *
C:E 1 127298 122.89 < 2.2e-16 ***
C:F 1 127176 0.77 0.380564
D:E 1 127223 47.76 4.813e-12 ***
D:F 1 127182 6.99 0.008191 **
E:F 1 127376 201.26 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
如果我从模型中排除交互:
full.model <- lmer(Z ~ A + B + C + D + E + F
+ I(A^2) + I(B^2) + I(C^2) + I(D^2) + I(E^2) + I(F^2)
+ (1 | R), data=mydata, REML=FALSE)
drop1(full.model, test="Chisq")
然后测试线性项:
Single term deletions
Model:
Z ~ A + B + C + D + E + F + I(A^2) + I(B^2) + I(C^2) + I(D^2) +
I(E^2) + I(F^2) + (1 | R)
Df AIC LRT Pr(Chi)
<none> 127998
A 1 130130 2133.9 < 2.2e-16 ***
B 1 130177 2181.0 < 2.2e-16 ***
C 1 133464 5467.6 < 2.2e-16 ***
D 1 129484 1487.9 < 2.2e-16 ***
E 1 130571 2575.0 < 2.2e-16 ***
F 1 128009 12.7 0.0003731 ***
I(A^2) 1 128418 422.2 < 2.2e-16 ***
I(B^2) 1 128193 197.4 < 2.2e-16 ***
I(C^2) 1 129971 1975.1 < 2.2e-16 ***
I(D^2) 1 128112 115.6 < 2.2e-16 ***
I(E^2) 1 128529 533.0 < 2.2e-16 ***
I(F^2) 1 128017 21.3 3.838e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
推荐答案
因为这是drop1
的工作方式(它并不特定于混合模型--您也会发现这种行为也适用于具有lm
的常规线性模型)。发件人:?drop1
:
然而,正如VEnables在链接文章中实际描述的那样,如果您愿意,可以让R违反边际(p.15):
换句话说,使用scope = . ~ .
将强制drop1
忽略边缘。您这样做的风险自负-当您按照此过程操作时,您绝对应该能够向自己解释您实际测试的内容.
例如:
set.seed(101)
dd <- expand.grid(A=1:10,B=1:10,g=factor(1:10))
dd$y <- rnorm(1000)
library(lme4)
m1 <- lmer(y~A*B+(1|g),data=dd)
drop1(m1,scope=.~.)
## Single term deletions
##
## Model:
## y ~ A * B + (1 | g)
## Df AIC
## <none> 2761.9
## A 1 2761.7
## B 1 2762.4
## A:B 1 2763.1
这篇关于为什么Drop1忽略混合模型的线性项?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!