问题描述
我有一个如下数据库:
并且我想获得一个熊猫数据框,该数据框基于日期中人口最多的前2行进行过滤.输出应如下所示:
And I would like to obtain a pandas dataframe filtered for the 2 rows per date, based on the top ones that have the highest population. The output should look like this:
我知道熊猫提供了一个称为nlargest的公式: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nlargest.html
I know that pandas offers a formula called nlargest:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nlargest.html
但是我认为它不适用于此用例.有什么解决方法吗?
but I don't think it is usable for this use case. Is there any workaround?
非常感谢!
推荐答案
我模仿了您的数据框,如下所示,并提供了一种前进的方式来获得所需的数据,希望对您有所帮助.
I have mimicked your dataframe as below and provided a way forward to get the desired, hope that will helpful.
>>> df
Date country population
0 2019-12-31 A 100
1 2019-12-31 B 10
2 2019-12-31 C 1000
3 2020-01-01 A 200
4 2020-01-01 B 20
5 2020-01-01 C 3500
6 2020-01-01 D 12
7 2020-02-01 D 2000
8 2020-02-01 E 54
您所需的解决方案:
您可以将 nlargest
方法与 set_index
ans groupby
方法一起使用.
Your Desired Solution:
You can use nlargest
method along with set_index
ans groupby
method.
这就是你会得到的.
>>> df.set_index('country').groupby('Date')['population'].nlargest(2)
Date country
2019-12-31 C 1000
A 100
2020-01-01 C 3500
A 200
2020-02-01 D 2000
E 54
Name: population, dtype: int64
现在,您希望通过重置DataFrame的索引使DataFrame进入原始状态,这将为您提供以下..
Now, as you want the DataFrame into original state by resetting the index of the DataFrame, which will give you following ..
>>> df.set_index('country').groupby('Date')['population'].nlargest(2).reset_index()
Date country population
0 2019-12-31 C 1000
1 2019-12-31 A 100
2 2020-01-01 C 3500
3 2020-01-01 A 200
4 2020-02-01 D 2000
5 2020-02-01 E 54
另一种解决方法:
通过 groupby
和 apply
函数,将 reset_index
与参数 drop = True
和 level =
..
Another way around:
With groupby
and apply
function use reset_index
with parameter drop=True
and level=
..
>>> df.groupby('Date').apply(lambda p: p.nlargest(2, columns='population')).reset_index(level=[0,1], drop=True)
# df.groupby('Date').apply(lambda p: p.nlargest(2, columns='population')).reset_index(level=['Date',1], drop=True)
Date country population
0 2019-12-31 C 1000
1 2019-12-31 A 100
2 2020-01-01 C 3500
3 2020-01-01 A 200
4 2020-02-01 D 2000
5 2020-02-01 E 54
这篇关于根据另一列选择前n列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!