您如何创建自己的视图

您如何创建自己的视图

本文介绍了您如何创建自己的视图,以便通过运算符|与现有视图进行交互?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

为什么此代码可以与 #if 0 块一起使用,但是如果将其删除,则会失败,并显示一组相当复杂的错误消息?更重要的是,如何使它与上面的非常相似的块具有相同的结果?

Why does this code work with the #if 0 block in place, but fails with a fairly complex set of error messages if you remove it? And more importantly, how do I make it the same result as the very similar block above it?

#include <ranges>
#include <iterator>
#include <optional>
#include <string_view>
#include <iostream>
#include <algorithm>

template <::std::ranges::view View,
          typename Pred>
requires ::std::ranges::input_range<View> &&
         ::std::ranges::common_range<View> &&
         ::std::is_object_v<Pred> &&
         ::std::indirect_unary_predicate<const Pred, ::std::ranges::iterator_t<View>>
class skip_after_view : public ::std::ranges::view_interface<skip_after_view<View, Pred>>
{
 public:
   skip_after_view() = default;
   skip_after_view(View v, Pred p)
        : subview_(::std::move(v)), pred_(::std::move(p))
   {}
   class iterator;
   friend class iterator;

   auto begin() const {
       return iterator{subview_.begin(), subview_.end(), &pred_};
   }
   auto end() const {
       return iterator{subview_.end(), subview_.end(), &pred_};
   }

 private:
   View subview_ = View();
   Pred pred_;
};

template <typename View, typename Pred>
class skip_after_view<View, Pred>::iterator
{
   using parent_t = View::iterator;
   using parent_traits = ::std::iterator_traits<parent_t>;
   friend class skip_after_view<View, Pred>;
 public:
   using value_type = parent_traits::value_type;
   using reference = parent_traits::reference;
   using pointer = parent_traits::pointer;
   using difference_type = ::std::ptrdiff_t;
   using iterator_category = ::std::input_iterator_tag;

   constexpr iterator() = default;

   auto operator *() { return *me_; }
   auto operator *() const { return *me_; }
   iterator &operator ++() {
       for (bool last_pred = true; last_pred; ) {
          if (end_ != me_) {
              last_pred = (*pred_)(operator *());
              ++me_;
          } else {
              last_pred = false;
          }
       }
       return *this;
   }
   void operator ++(int) {
       ++(*this);
   }
   friend
   bool operator ==(iterator const &a, iterator const &b) {
       return a.me_ == b.me_;
   }

 private:
   parent_t me_;
   parent_t end_;
   Pred const *pred_ = nullptr;

   iterator(parent_t const &me, parent_t end, Pred const *pred)
        : me_(me), end_(::std::move(end)), pred_(pred)
   {}
};

template <std::ranges::range Range, typename Pred>
skip_after_view(Range&&) -> skip_after_view<std::ranges::views::all_t<Range>, Pred>;

struct skip_after_adaptor {

   template <typename Pred>
   class closure {
       friend class skip_after_adaptor;
       Pred pred;

       explicit closure(Pred &&p) : pred(::std::move(p)) {}
     public:
       template <typename Range>
       auto operator ()(Range &&range) {
          return skip_after_view(::std::forward<Range>(range),
                                 ::std::move(pred));
       }
   };
   template <typename Pred>
   auto operator ()(Pred pred) const {
       return closure<Pred>(::std::move(pred));
   }
   template <typename Range, typename Pred>
   auto operator()(Range &&range, Pred &&pred) const {
       return skip_after_view(::std::forward(range), ::std::forward(pred));
   }
   template <typename Range, typename Pred>
   friend auto operator|(Range&& rng, closure<Pred> &&fun) {
       return fun(std::forward<Range>(rng));
    }
};

constexpr auto skip_after = skip_after_adaptor{};

template <::std::input_iterator it>
void check(it const &)
{}

int main()
{
    using ::std::string_view;
    using namespace ::std::ranges::views;
    using ::std::ostream_iterator;
    using ::std::ranges::copy;
    using ::std::cout;
    auto after_e = [](char c) { return c == 'e'; };

    constexpr string_view sv{"George Orwell"};
    int sum = 0;
    {
       cout << '[';
       copy(sv | skip_after(after_e) | take(6),
            ostream_iterator<char>(cout));
       cout << "]\n";
    }
#if 0
    {
       auto tmp = skip_after(after_e) | take(6);
       cout << '[';
       copy(sv | tmp, ostream_iterator<char>(cout));
       cout << "]\n";
    }
#endif
    return sum;
}

必填的编译器资源管理器链接

如果我想要的东西不是绝对不可能的,那么有没有丑陋的方法呢?例如,我可以建立自己的合成机制,并使用一堆难看的垃圾将其与现有视图交互.

If what I want isn't cleanly possible, is there an ugly way to do it? For example, could I make my own composition mechanism and have an ugly bunch of garbage to interface it with the existing views.

推荐答案

无法编写与C ++ 20中的标准适配器组成的范围适配器闭包对象.标准库没有公开用于该合成的机制.

There's no way to write a range adapter closure object that composes with the standard ones in C++20. The standard library doesn't expose the mechanism it uses for that composition.

sv |skip_after(after_e)|take(6)之所以有效,是因为 sv |skip_after(after_e)会击中您的 operator | ,这会产生一个 view ,然后可以与 take(6)一起使用.

sv | skip_after(after_e) | take(6) works because sv | skip_after(after_e) hits your operator|, which produces a view that can then be used with take(6).

C ++ 23很可能会公开合成机制.

There's a good chance that C++23 will expose the composition mechanism.

这篇关于您如何创建自己的视图,以便通过运算符|与现有视图进行交互?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-05 22:59