本文介绍了Spark连接池-这是正确的方法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在结构化流中有一个Spark作业,该作业使用来自Kafka的数据并将其保存到InfluxDB。我已经实现了如下的连接池机制:

I have a Spark job in Structured Streaming that consumes data from Kafka and saves it to InfluxDB. I have implemented the connection pooling mechanism as follows:

object InfluxConnectionPool {
      val queue = new LinkedBlockingQueue[InfluxDB]()

      def initialize(database: String): Unit = {
        while (!isConnectionPoolFull) {
          queue.put(createNewConnection(database))
        }
      }

      private def isConnectionPoolFull: Boolean = {
        val MAX_POOL_SIZE = 1000
        if (queue.size < MAX_POOL_SIZE)
          false
        else
          true
      }

      def getConnectionFromPool: InfluxDB = {
        if (queue.size > 0) {
          val connection = queue.take()
          connection
        } else {
          System.err.println("InfluxDB connection limit reached. ");
          null
        }

      }

      private def createNewConnection(database: String) = {
        val influxDBUrl = "..."
        val influxDB = InfluxDBFactory.connect(...)
        influxDB.enableBatch(10, 100, TimeUnit.MILLISECONDS)
        influxDB.setDatabase(database)
        influxDB.setRetentionPolicy(database + "_rp")
        influxDB
      }

      def returnConnectionToPool(connection: InfluxDB): Unit = {
        queue.put(connection)
      }
    }

在我的火花工作中,我执行以下操作

In my spark job, I do the following

def run(): Unit = {

val spark = SparkSession
  .builder
  .appName("ETL JOB")
  .master("local[4]")
  .getOrCreate()


 ...

 // This is where I create connection pool
InfluxConnectionPool.initialize("dbname")

val sdvWriter = new ForeachWriter[record] {
  var influxDB:InfluxDB = _

  def open(partitionId: Long, version: Long): Boolean = {
    influxDB = InfluxConnectionPool.getConnectionFromPool
    true
  }
  def process(record: record) = {
    // this is where I use the connection object and save the data
    MyService.saveData(influxDB, record.topic, record.value)
    InfluxConnectionPool.returnConnectionToPool(influxDB)
  }
  def close(errorOrNull: Throwable): Unit = {
  }
}

import spark.implicits._
import org.apache.spark.sql.functions._

//Read data from kafka
val kafkaStreamingDF = spark
  .readStream
  ....

val sdvQuery = kafkaStreamingDF
  .writeStream
  .foreach(sdvWriter)
  .start()
  }

但是,当我运行作业时,出现以下异常

But, when I run the job, I get the following exception

18/05/07 00:00:43 ERROR StreamExecution: Query [id = 6af3c096-7158-40d9-9523-13a6bffccbb8, runId = 3b620d11-9b93-462b-9929-ccd2b1ae9027] terminated with error
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 8, 192.168.222.5, executor 1): java.lang.NullPointerException
        at java.util.concurrent.LinkedBlockingQueue.put(LinkedBlockingQueue.java:332)
        at com.abc.telemetry.app.influxdb.InfluxConnectionPool$.returnConnectionToPool(InfluxConnectionPool.scala:47)
        at com.abc.telemetry.app.ETLappSave$$anon$1.process(ETLappSave.scala:55)
        at com.abc.telemetry.app.ETLappSave$$anon$1.process(ETLappSave.scala:46)
        at org.apache.spark.sql.execution.streaming.ForeachSink$$anonfun$addBatch$1.apply(ForeachSink.scala:53)
        at org.apache.spark.sql.execution.streaming.ForeachSink$$anonfun$addBatch$1.apply(ForeachSink.scala:49)

NPE是将连接返回到连接p时队列中的ool(连接)。我在这里想念什么?任何帮助表示赞赏。

The NPE is when the connection is returned to the connection pool in queue.put(connection). What am I missing here? Any help appreciated.

P.S:在常规DStreams方法中,我是使用foreachPartition方法实现的。不确定如何使用结构化流进行连接重用/池化。

P.S: In the regular DStreams approach, I did it with foreachPartition method. Not sure how to do connection reuse/pooling with structured streaming.

推荐答案

我同样使用forEachWriter进行redis,其中池仅在该过程中被引用。您的请求如下所示

I am using the forEachWriter for redis similarly, where the pool is being referenced in the process only. Your request would look something like below

def open(partitionId: Long, version: Long): Boolean = {
    true
  }

  def process(record: record) = {
    influxDB = InfluxConnectionPool.getConnectionFromPool
    // this is where I use the connection object and save the data
    MyService.saveData(influxDB, record.topic, record.value)
    InfluxConnectionPool.returnConnectionToPool(influxDB)
  }```

这篇关于Spark连接池-这是正确的方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-05 19:38