本文介绍了循环在ddply中创建新的变量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我使用ddply来汇总和汇总数据框架变量,我有兴趣循环访问数据框的列表以创建新的变量。 new.data c(factor,factor2), function(df)c(a11_a10 = CustomFunction(df $ a11_a10), a12_a11 = CustomFunction(df $ a12_a11), a13_a12 = CustomFunction(df $ a13_a12), ... ... .. 。)) 有没有办法让我在ddply中插入一个循环,这样我就可以避免写每一个新的总结变量,例如: pre $ for(i in 11:n){ paste(a i,_a,i - 1)= CustomFunction(.....)} 我知道这不是实际的做法,但我只是想展示一下如何将其概念化。有没有办法做到这一点,在我调用ddply函数,或通过列表? 更新:因为我是一个新的用户,我不能发表一个答案我自己的问题: 我的答案涉及尼克的答案和Ista的评论的想法: func varrange< - min:max usenames<粘贴(a,varrange,_a,varrange-gap,sep =) new.data< - ddply(old.data,。(factor,factor2), colwise(CustomFunction,c(usenames)))} 解决方案 建立在@Nick的优秀答案,这里是一个解决问题的方法 $ b $ pre $ foo 名称= paste(a,11:n,_a,10:(n-1),sep =)结果= sapply(df [ ],CustomFunction)} new.data = ldply(dlply(old.data,c(factor,factor2)),foo) 以下示例应用程序使用 tips 数据集C $ C> GGPLOT2 。假设我们要通过性别小费和 total_bill 的平均值c $ c>和 smoker ,代码如何工作 > foo = function(df){names = c(tip,total_bill); sapply(df [,names],mean)} new = ldply(dlply(tips,c(sex,smoker)),foo) pre> 它产生如下所示的输出: .id提示total_bill 1女性2.773519 18.10519 2女性是2.931515 17.97788 3男性3.113402 19.79124 4男性是3.051167 22.28450 $ / code > 这是您要找的吗? I am using ddply to aggregate and summarize data frame variables, and I am interested in looping through my data frame's list to create the new variables.new.data <- ddply(old.data, c("factor", "factor2"), function(df) c(a11_a10 = CustomFunction(df$a11_a10), a12_a11 = CustomFunction(df$a12_a11), a13_a12 = CustomFunction(df$a13_a12), ... ... ...))Is there a way for me to insert a loop in ddply so that I can avoid writing each new summary variable out, e.g.for (i in 11:n) { paste("a", i, "_a", i - 1) = CustomFunction(..... )}I know that this is not how it would actually be done, but I just wanted to show how I'd conceptualize it. Is there a way to do this in the function I call in ddply, or via a list?UPDATE: Because I'm a new user, I can't post an answer to my own question:My answer involves ideas from Nick's answer and Ista's comment:func <- function(old.data, min, max, gap) { varrange <- min:max usenames <- paste("a", varrange, "_a", varrange - gap, sep="") new.data <- ddply(old.data, .(factor, factor2), colwise(CustomFunction, c(usenames)))} 解决方案 Building on the excellent answer by @Nick, here is one approach to the problemfoo <- function(df){ names = paste("a", 11:n, "_a", 10:(n-1), sep = "") results = sapply(df[,names], CustomFunction)}new.data = ldply(dlply(old.data, c("factor", "factor2")), foo)Here is an example application using the tips dataset in ggplot2. Suppose we want to calculate the average of tip and total_bill by combination of sex and smoker, here is how the code would workfoo = function(df){names = c("tip", "total_bill"); sapply(df[,names], mean)}new = ldply(dlply(tips, c("sex", "smoker")), foo)It produces the output shown below .id tip total_bill1 Female.No 2.773519 18.105192 Female.Yes 2.931515 17.977883 Male.No 3.113402 19.791244 Male.Yes 3.051167 22.28450Is this what you were looking for? 这篇关于循环在ddply中创建新的变量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-29 04:01