本文介绍了将前导零添加到 Spark 数据帧中的列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

简而言之,我正在利用 spark-xml 对 XML 文件进行一些解析.但是,使用它会删除我感兴趣的所有值中的前导零.但是,我需要最终输出,它是一个 DataFrame,以包含前导零.我不确定/无法想出一种方法来向我感兴趣的列添加前导零.

In short, I'm leveraging spark-xml to do some parsing of XML files. However, using this is removing the leading zeros in all the values I'm interested in. However, I need the final output, which is a DataFrame, to include the leading zeros. I'm unsure/can not figure out a way to add leading zeros to the columns I'm interested in.

val df = spark.read
  .format("com.databricks.spark.xml")
  .option("rowTag", "output")
  .option("excludeAttribute", true)
  .option("allowNumericLeadingZeros", true) //including this does not solve the problem
  .load("pathToXmlFile")

我得到的示例输出

+------+---+--------------------+
|iD    |val|Code                |
+------+---+--------------------+
|1     |44 |9022070536692784476 |
|2     |66 |-5138930048185086175|
|3     |25 |805582856291361761  |
|4     |17 |-9107885086776983000|
|5     |18 |1993794295881733178 |
|6     |31 |-2867434050463300064|
|7     |88 |-4692317993930338046|
|8     |44 |-4039776869915039812|
|9     |20 |-5786627276152563542|
|10    |12 |7614363703260494022 |
+------+---+--------------------+

期望的输出

+--------+----+--------------------+
|iD      |val |Code                |
+--------+----+--------------------+
|001     |044 |9022070536692784476 |
|002     |066 |-5138930048185086175|
|003     |025 |805582856291361761  |
|004     |017 |-9107885086776983000|
|005     |018 |1993794295881733178 |
|006     |031 |-2867434050463300064|
|007     |088 |-4692317993930338046|
|008     |044 |-4039776869915039812|
|009     |020 |-5786627276152563542|
|0010    |012 |7614363703260494022 |
+--------+----+--------------------+

推荐答案

你可以简单地使用 concat 内置函数来做到这一点

You can simply do that by using concat inbuilt function

df.withColumn("iD", concat(lit("00"), col("iD")))
           .withColumn("val", concat(lit("0"), col("val")))

这篇关于将前导零添加到 Spark 数据帧中的列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-05 12:20